Glucose Inhibition Persists in Hypothalamic Neurons Lacking Tandem-Pore K+ Channels

Glucose sensing by hypothalamic neurons triggers adaptive metabolic and behavioral responses. In orexin neurons, extracellular glucose activates a leak K(+) current promoting electrical activity inhibition. Sensitivity to external acidification and halothane, and resistance to ruthenium red designat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2009-02, Vol.29 (8), p.2528-2533
Hauptverfasser: Guyon, Alice, Tardy, Magalie P, Rovere, Carole, Nahon, Jean-Louis, Barhanin, Jacques, Lesage, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucose sensing by hypothalamic neurons triggers adaptive metabolic and behavioral responses. In orexin neurons, extracellular glucose activates a leak K(+) current promoting electrical activity inhibition. Sensitivity to external acidification and halothane, and resistance to ruthenium red designated the tandem-pore K(+) (K(2P)) channel subunit TASK3 as part of the glucose-induced channel. Here, we show that glucose inhibition and its pH sensitivity persist in mice lacking TASK3 or TASK1, or both subunits. We also tested the implication of another class of K(2P) channels activated by halothane. In the corresponding TREK1/2/TRAAK triple knock-out mice, glucose inhibition persisted in hypothalamic neurons ruling out a major contribution of these subunits to the glucose-activated K(+) conductance. Finally, block of this glucose-induced hyperpolarizing current by low Ba(2+) concentrations was consistent with the conclusion that K(2P) channels are not required for glucosensing in hypothalamic neurons.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.5764-08.2009