Synonymous but Not Silent: A Synonymous VHL Variant in Exon 2 Confers Susceptibility to Familial Pheochromocytoma and von Hippel-Lindau Disease

Abstract Context von Hippel-Lindau (VHL) disease, comprising renal cancer, hemangioblastoma, and/or pheochromocytoma (PHEO), is caused by missense or truncating variants of the VHL tumor-suppressor gene, which is involved in degradation of hypoxia-inducible factors (HIFs). However, the role of synon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2019-09, Vol.104 (9), p.3826-3834
Hauptverfasser: Flores, Shahida K, Cheng, Ziming, Jasper, Angela M, Natori, Keiko, Okamoto, Takahiro, Tanabe, Akiyo, Gotoh, Koro, Shibata, Hirotaka, Sakurai, Akihiro, Nakai, Takuya, Wang, Xiaojing, Zethoven, Magnus, Balachander, Shiva, Aita, Yuichi, Young, William, Zheng, Siyuan, Takekoshi, Kazuhiro, Nakamura, Eijiro, Tothill, Richard W, Aguiar, Ricardo C T, Dahia, Patricia L M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Context von Hippel-Lindau (VHL) disease, comprising renal cancer, hemangioblastoma, and/or pheochromocytoma (PHEO), is caused by missense or truncating variants of the VHL tumor-suppressor gene, which is involved in degradation of hypoxia-inducible factors (HIFs). However, the role of synonymous VHL variants in the disease is unclear. Objective We evaluated a synonymous VHL variant in patients with familial PHEO or VHL disease without a detectable pathogenic VHL mutation. Design We performed genetic and transcriptional analyses of leukocytes and/or tumors from affected and unaffected individuals and evaluated VHL splicing in existing cancer databases. Results We identified a synonymous VHL variant (c.414A>G, p.Pro138Pro) as the driver event in five independent individuals/families with PHEOs or VHL syndrome. This variant promotes exon 2 skipping and hence, abolishes expression of the full-length VHL transcript. Exon 2 spans the HIF-binding domain required for HIF degradation by VHL. Accordingly, PHEOs carrying this variant display HIF hyperactivation typical of VHL loss. Moreover, other exon 2 VHL variants from the The Cancer Genome Atlas pan-cancer datasets are biased toward expression of a VHL transcript that excludes this exon, supporting a broader impact of this spliced variant. Conclusion A recurrent synonymous VHL variant (c.414A>G, p.Pro138Pro) confers susceptibility to PHEO and VHL disease through splice disruption, leading to VHL dysfunction. This finding indicates that certain synonymous VHL variants may be clinically relevant and should be considered in genetic testing and surveillance settings. The observation that other coding VHL variants can exclude exon 2 suggests that dysregulated splicing may be an underappreciated mechanism in VHL-mediated tumorigenesis. A synonymous von Hippel-Lindau (VHL) variant causes pheochromocytoma or VHL disease as a result of exon 2 skipping.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2019-00235