Soluble and membrane-bound protein carrier mediate direct copper transport to the ethylene receptor family
The plant hormone ethylene is a key regulator of plant growth, development and stress adaption. Ethylene perception and response are mediated by a family of integral membrane receptors (ETRs) localized at the ER-Golgi network. The biological function of these receptors relies on a protein-bound copp...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.10715-11, Article 10715 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The plant hormone ethylene is a key regulator of plant growth, development and stress adaption. Ethylene perception and response are mediated by a family of integral membrane receptors (ETRs) localized at the ER-Golgi network. The biological function of these receptors relies on a protein-bound copper cofactor. Nonetheless, molecular processes and structures controlling assembly and integration of the metal into the functional plant hormone receptor are still unknown. Here, we have explored the molecular pathways of copper transfer from the plant cytosol to the ethylene receptor family by analyzing protein–protein interactions of receptors with soluble and membrane-bound plant copper carriers. Our results suggest that receptors primarily acquire their metal cofactor from copper transporter RESPONSIVE-TO-ANTAGONIST-1 (RAN1) which has been loaded with the transition metal beforehand by soluble copper carriers of the ATX1-family. In addition, we found evidence for a direct interaction of ETRs with soluble chaperones ANTIOXIDANT-1 (ATX1) and COPPER TRANSPORT PROTEIN (CCH) raising the possibility of a direct copper exchange between soluble chaperones and receptors. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-47185-6 |