De novo design of symmetric ferredoxins that shuttle electrons in vivo

A symmetric origin for bacterial ferredoxins was first proposed over 50 y ago, yet, to date, no functional symmetric molecule has been constructed. It is hypothesized that extant proteins have drifted from their symmetric roots via gene duplication followed by mutations. Phylogenetic analyses of ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-07, Vol.116 (29), p.14557-14562
Hauptverfasser: Mutter, Andrew C., Tyryshkin, Alexei M., Campbell, Ian J., Poudel, Saroj, Bennett, George N., Silberg, Jonathan J., Nanda, Vikas, Falkowski, Paul G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A symmetric origin for bacterial ferredoxins was first proposed over 50 y ago, yet, to date, no functional symmetric molecule has been constructed. It is hypothesized that extant proteins have drifted from their symmetric roots via gene duplication followed by mutations. Phylogenetic analyses of extant ferredoxins support the independent evolution of N- and C-terminal sequences, thereby allowing consensus-based design of symmetric 4Fe-4S molecules. All designs bind two [4Fe-4S] clusters and exhibit strongly reducing midpoint potentials ranging from −405 to −515 mV. One of these constructs efficiently shuttles electrons through a designed metabolic pathway in Escherichia coli. These finding establish that ferredoxins consisting of a symmetric core can be used as a platform to design novel electron transfer carriers for in vivo applications. Outer-shell asymmetry increases sequence space without compromising electron transfer functionality.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1905643116