Expression profiling and mapping of defence response genes associated with the barley-Pyrenophora teres incompatible interaction

Barley net- and spot-form of net blotch disease are caused by two formae of the hemibiotrophic fungus Pyrenophora teres (P. t. f. teres and P. t. f. maculata). In the present study, suppression subtractive hybridization (SSH) was used in combination with quantitative real-time reverse transcriptase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2008-09, Vol.9 (5), p.645-660
Hauptverfasser: BOGACKI, P, OLDACH, K.H, WILLIAMS, K.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Barley net- and spot-form of net blotch disease are caused by two formae of the hemibiotrophic fungus Pyrenophora teres (P. t. f. teres and P. t. f. maculata). In the present study, suppression subtractive hybridization (SSH) was used in combination with quantitative real-time reverse transcriptase PCR to identify and profile the expression of defence response (DR) genes in the early stages of both barley-P. teres incompatible and compatible interactions. From a pool of 307 unique gene transcripts identified by SSH, 45 candidate DR genes were selected for temporal expression profiling in infected leaf epidermis. Differential expression profiles were observed for 28 of the selected candidates, which were grouped into clusters depending on their expression profiles within the first 48 h after inoculation. The expression profiles characteristic of each gene cluster were very similar in both barley-P. t. f. teres and barley-P. t. f. maculata interactions, indicating that resistance to both pathogens could be mediated by induction of the same group of DR genes. Chromosomal map locations for 21 DR genes were identified using four doubled-haploid mapping populations. The mapped DR genes were distributed across all seven barley chromosomes, with at least one gene mapping to within 15 cM of another on chromosomes 1H, 2H, 5H and 7H. Additionally, some DR genes appeared to co-localize with loci harbouring known resistance genes or quantitative trait loci for net blotch resistance on chromosomes 6H and 7H, as well as loci associated with resistance to other barley diseases. The DR genes are discussed with respect to their map locations and potential functional role in contributing to net blotch disease resistance.
ISSN:1464-6722
1364-3703
DOI:10.1111/j.1364-3703.2008.00485.x