BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize
SUMMARY Fusarium graminearum is a common pathogen of wheat and maize throughout the world. Despite recent advances in the elucidation of the genetic basis of virulence, significant gaps in the regulatory network underlying pathogenesis remain to be filled. In particular, little is known at the molec...
Gespeichert in:
Veröffentlicht in: | Molecular plant pathology 2012-06, Vol.13 (5), p.431-444 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
Fusarium graminearum is a common pathogen of wheat and maize throughout the world. Despite recent advances in the elucidation of the genetic basis of virulence, significant gaps in the regulatory network underlying pathogenesis remain to be filled. In particular, little is known at the molecular level about the overlap among mechanisms of pathogenicity on maize and wheat. G‐protein signalling has been implicated in pathogenesis in F. graminearum, although the underlying mechanisms are not fully understood. In this study, we investigated the involvement of a putative phosducin‐like gene (BDM1) in growth, development and pathogenesis in F. graminearum. Targeted deletion of BDM1 revealed roles in sexual and asexual sporulation, germ tube development, hyphal branching and mycelial morphology. During pathogenesis, BDM1 is required for wild‐type levels of colonization of maize silk tissue and stalks, but is dispensable for the colonization of kernels. The deletion of BDM1 also reduced the virulence of F. graminearum during the infection of wheat seedlings and heads, resulting in a significant reduction in fungal biomass and a delayed spread of visual symptom expression (i.e. bleaching in heads). Furthermore, BDM1 is required for wild‐type levels of deoxynivalenol biosynthesis during the infection of wheat heads and maize silks. In summation, BDM1 is one of the few genes characterized to date in F. graminearum involved in virulence during infection of both maize and wheat. Thus, the functional characterization of BDM1 has established a new regulatory link between pathogenesis in maize and wheat, and provides a genetic resource through which the regulatory networks underlying virulence in F. graminearum can be further elucidated. |
---|---|
ISSN: | 1464-6722 1364-3703 |
DOI: | 10.1111/j.1364-3703.2011.00758.x |