A wheat COP9 subunit 5‐like gene is negatively involved in host response to leaf rust

Summary The COP9 (constitutive photomorphogenesis 9) signalosome (CSN) is a protein complex involved in the ubiquitin proteasome system and a common host target of diverse pathogens in Arabidopsis. The known derubylation function of the COP9 complex is carried out by subunit 5 encoded by AtCSN5A or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2017-01, Vol.18 (1), p.125-133
Hauptverfasser: Zhang, Hongtao, Wang, Xiaojing, Giroux, Michael J., Huang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The COP9 (constitutive photomorphogenesis 9) signalosome (CSN) is a protein complex involved in the ubiquitin proteasome system and a common host target of diverse pathogens in Arabidopsis. The known derubylation function of the COP9 complex is carried out by subunit 5 encoded by AtCSN5A or AtCSN5B in Arabidopsis. A single CSN5‐like gene (designated as TaCSN5) with three homeologues was identified on the long arms of wheat (Triticum aestivum L.) group 2 chromosomes. In this study, we identified and characterized the function of TaCSN5 in response to infection by the leaf rust pathogen. Down‐regulation of all three TaCSN5 homeologues or mutations in the homeologues on chromosomes 2A or 2D resulted in significantly enhanced resistance to leaf rust. Enhanced leaf rust resistance corresponded to a seven‐fold increase in PR1 (pathogenesis‐related gene 1) expression. Collectively, the data indicate that the wheat COP9 subunit 5‐like gene acts as a negative regulator of wheat leaf rust resistance.
ISSN:1464-6722
1364-3703
DOI:10.1111/mpp.12467