Activation of adenosine A2A receptors induces TrkB translocation and increases BDNF-mediated phospho-TrkB localization in lipid rafts: implications for neuromodulation

Brain-derived neurotrophic factor (BDNF) signaling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signaling pathways and modulation of neurotransmitter release by BDNF. Since TrkB recep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2010-06, Vol.30 (25), p.8468-8480
Hauptverfasser: Assaife-Lopes, Natália, Sousa, Vasco C, Pereira, Daniela B, Ribeiro, Joaquim A, Chao, Moses V, Sebastião, Ana M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brain-derived neurotrophic factor (BDNF) signaling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signaling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A(2A) receptor activation, we hypothesized that activation of A(2A) receptors could influence TrkB receptor localization among different membrane microdomains. We found that adenosine A(2A) receptor agonists increased the levels of TrkB receptors in the lipid raft fraction of cortical membranes and potentiated BDNF-induced augmentation of phosphorylated TrkB levels in lipid rafts. Blockade of the clathrin-mediated endocytosis with monodansylcadaverine (100 microm) did not modify the effects of the A(2A) receptor agonists but significantly impaired BDNF effects on TrkB recruitment to lipid rafts. The effect of A(2A) receptor activation in TrkB localization was mimicked by 5 microm forskolin, an adenylyl cyclase activator. Also, it was blocked by the PKA inhibitors Rp-cAMPs and PKI-(14-22), and by the Src-family kinase inhibitor PP2. Moreover, removal of endogenous adenosine or disruption of lipid rafts reduced BDNF stimulatory effects on glutamate release from cortical synaptosomes. Lipid raft integrity was also required for the effects of BDNF on hippocampal long-term potentiation at CA1 synapses. Our data demonstrate, for the first time, a BDNF-independent recruitment of TrkB receptors to lipid rafts induced by activation of adenosine A(2A) receptors, with functional consequences for TrkB phosphorylation and BDNF-induced modulation of neurotransmitter release and hippocampal plasticity.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.5695-09.2010