Prophylactic treatment of hyperbaric oxygen treatment mitigates inflammatory response via mitochondria transfer

Summary Aims Hyperbaric oxygen therapy (HBOT) has been widely used as postinjury treatment; however, we investigate its ability to mitigate potential damage as a preconditioning option. Here, we tested the hypothesis that HBOT preconditioning mitigates cell death in primary rat neuronal cells (PRNCs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CNS neuroscience & therapeutics 2019-08, Vol.25 (8), p.815-823
Hauptverfasser: Lippert, Trenton, Borlongan, Cesario V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Aims Hyperbaric oxygen therapy (HBOT) has been widely used as postinjury treatment; however, we investigate its ability to mitigate potential damage as a preconditioning option. Here, we tested the hypothesis that HBOT preconditioning mitigates cell death in primary rat neuronal cells (PRNCs) through the transfer of mitochondria from astrocytes. Methods Primary rat neuronal cells were subjected to a 90‐minute HBOT treatment at 2.5 absolute atmospheres prior to either tumor necrosis factor‐alpha (TNF‐alpha) or lipopolysaccharide (LPS) injury to simulate the inflammation‐plagued secondary cell death associated with stroke and traumatic brain injury (TBI). After incubation with TNF‐alpha or LPS, the cell viability of each group was examined. Results There was a significant increase of cell viability accompanied by mitochondrial transfer in the injury groups that received HBOT preconditioning compared to the injury alone groups (44 ± 5.2 vs 68 ± 4.48, n = 20, P 
ISSN:1755-5930
1755-5949
DOI:10.1111/cns.13124