Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy
Extramammary Paget disease (EMPD) is a locally aggressive cutaneous malignancy that usually arises in anogenital or axillary skin. Immune checkpoint inhibitors targeting programmed cell death receptor (PD-1) and/or its ligand (PD-L1) are approved for the treatment of several types of cancer, and res...
Gespeichert in:
Veröffentlicht in: | Cancers 2019-05, Vol.11 (6), p.754 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extramammary Paget disease (EMPD) is a locally aggressive cutaneous malignancy that usually arises in anogenital or axillary skin. Immune checkpoint inhibitors targeting programmed cell death receptor (PD-1) and/or its ligand (PD-L1) are approved for the treatment of several types of cancer, and response to these generally correlates with increased PD-L1 expression by tumor cells. The expression of PD-L1 and composition and density of the tumor-associated immune infiltrate in EMPD have been little studied. To determine whether EMPD might be amenable to immune checkpoint blockade, we analyzed the expression of PD-1 and PD-L1 and the composition and density of the tumor-associated immune infiltrate in EMPD and evaluated associations between biomarker expression and clinicopathologic parameters. Twenty-one EMPD tumors were evaluated for tumor cell PD-L1 expression and for relative expression and distribution of CD3, CD8, PD-1, and PD-L1 in the tumor-associated immune infiltrate by using a combination of visual and image analysis (Aperio ImageScope). In addition, PD-L1 expression was assessed in 10 cases of mammary Paget disease (MPD). In EMPD cases, PD-L1 was expressed by tumor cells (3/21; 14%) and the tumor-associated immune infiltrate (15/21; 71%), and PD-1 was expressed by the tumor-associated immune infiltrate in all cases analyzed (18/18). However, PD-L1 expression by EMPD tumor cells did not correlate with the density of CD3-, CD8-, or PD-1-positive cells in the tumor-associated immune infiltrate or other clinicopathologic parameters. Furthermore, the density of CD3, CD8, PD-1, and PD-L1 in the tumor-associated immune infiltrate did not correlate with any clinicopathologic parameters evaluated with the exception that CD3 positive values were significantly higher in patients who were still alive (median, 1310 cells/mm
; range, 543-2115;) than in those who died (median, 611 cells/mm
; range, 481-908;
= 0.049). In all MPD cases, PD-L1 was absent in tumor cells but present in the tumor-associated immune infiltrate, and PD-L1 expression in lymphocytes was lower in patients with HER2/neu-positive than in those with HER2/neu-negative disease (
= 0.07). Our findings raise the possibility of therapeutic targeting of the PD-1/PD-L1 axis in EMPD. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers11060754 |