Fine Mapping of Glutamate Decarboxylase 65 Epitopes Reveals Dependency on Hydrophobic Amino Acids for Specific Interactions

Characterization of multiple antibody epitopes has revealed the necessity of specific groups of amino acid residues for reactivity. This applies to the majority of antibody-antigen interactions, where especially charged and hydrophilic amino acids have been reported to be essential for antibody reac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-06, Vol.20 (12), p.2909
Hauptverfasser: Valdarnini, Niccolò, Holm, Bettina, Hansen, Paul, Rovero, Paolo, Houen, Gunnar, Trier, Nicole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Characterization of multiple antibody epitopes has revealed the necessity of specific groups of amino acid residues for reactivity. This applies to the majority of antibody-antigen interactions, where especially charged and hydrophilic amino acids have been reported to be essential for antibody reactivity. This study describes thorough characterization of glutamic acid decarboxylase (GAD) 65 antigenic epitopes, an immunodominant autoantigen in type 1 diabetes (T1D). As linear epitopes are sparsely described for GAD65 in T1D, we aimed to identify and thoroughly characterize two GAD65 antibodies using immunoassays. A monoclonal antibody recognized an epitope in the N-terminal domain of GAD65, FWSFGSE , whereas a polyclonal antibody recognized two continuous epitopes in the C-terminal domain, corresponding to amino acids RTLED and PLGDKVNF . Hydrophobic amino acids were essential for antibody reactivity, which was verified by competitive inhibition assays. Moreover, the epitopes were located in flexible linker regions and turn structures. These findings confirm the versatile nature of antibody-antigen interactions and describe potential continuous epitopes related to T1D, which predominantly have been proposed to be of discontinuous nature.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20122909