Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI
Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric in...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.10063-9, Article 10063 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric intensities, which combines machine learning (ML) with a mechanistic model of tumor growth to provide spatially resolved tumor cell density predictions. The ML component is an imaging data-driven graph-based semi-supervised learning model and we use the Proliferation-Invasion (PI) mechanistic tumor growth model. We thus refer to the hybrid model as the ML-PI model. The hybrid model was trained using 82 image-localized biopsies from 18 primary GBM patients with pre-operative MRI using a leave-one-patient-out cross validation framework. A Relief algorithm was developed to quantify relative contributions from the data sources. The ML-PI model statistically significantly outperformed (p |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-46296-4 |