Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A)
Botulinum neurotoxin type A (BoNT/A) is a metalloprotease that blocks synaptic transmission via the cleavage of SNAP-25 (synaptosomal-associated protein of 25 kDa). BoNT/A is successfully used in clinical neurology for the treatment of several neuromuscular pathologies and pain syndromes. Despite it...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2011-11, Vol.31 (44), p.15650-15659 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Botulinum neurotoxin type A (BoNT/A) is a metalloprotease that blocks synaptic transmission via the cleavage of SNAP-25 (synaptosomal-associated protein of 25 kDa). BoNT/A is successfully used in clinical neurology for the treatment of several neuromuscular pathologies and pain syndromes. Despite its widespread use, relatively little is known on BoNT/A intracellular trafficking in neurons. Using the visual pathway as a model system, here we show that catalytically active BoNT/A is capable of undergoing anterograde axonal transport and transcytosis. Following BoNT/A injection into the rat eye, significant levels of BoNT/A-cleaved SNAP-25 appeared in the retinorecipient layers of the superior colliculus (SC). Anterograde propagation of BoNT/A effects required axonal transport, ruling out a systemic spread of the toxin. Cleaved SNAP-25 was present in presynaptic structures of the tectum, but retinal terminals were devoid of the immunoreactivity, indicative of transcytosis. Experiments based on sequential administration of BoNT/A and BoNT/E showed a persistent catalytic activity of BoNT/A in tectal cells following its injection into the retina. Our findings demonstrate that catalytically active BoNT/A is anterogradely transported from the eye to the SC and transcytosed to tectal synapses. These data are important for a more complete understanding of the mechanisms of action of BoNT/A. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.2618-11.2011 |