Cingulum microstructure predicts cognitive control in older age and mild cognitive impairment

Cognitive control, an important facet of human cognition, provides flexibility in response to varying behavioral demands. Previous work has focused on the role of prefrontal cortex, notably the anterior cingulate cortex. However, it is now clear that this is one node of a distributed cognitive netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2012-12, Vol.32 (49), p.17612-17619
Hauptverfasser: Metzler-Baddeley, Claudia, Jones, Derek K, Steventon, Jessica, Westacott, Laura, Aggleton, John P, O'Sullivan, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive control, an important facet of human cognition, provides flexibility in response to varying behavioral demands. Previous work has focused on the role of prefrontal cortex, notably the anterior cingulate cortex. However, it is now clear that this is one node of a distributed cognitive network. In this emerging network view, structural connections are inherent elements, but their role has not been emphasized. Furthermore, lesion and functional imaging studies have contributed little knowledge about anatomical segregation, functional specialization, and behavioral importance of white matter connections. The relationship between cognitive control and microstructure of connections within the cingulum, a major white matter tract and conduit of projections to prefrontal sites, was probed in vivo in humans with diffusion MRI. Twenty healthy controls and 25 individuals with amnestic mild cognitive impairment (MCI), an early stage of age-associated cognitive deterioration, underwent cognitive testing, including several measures of cognitive control. For each individual, the anterior, middle, posterior, and parahippocampal portions of the cingulum bundle were reconstructed separately using deterministic tractography and anatomical landmarks. Microstructural variation in the left anterior cingulum was closely related to interindividual control based on verbal or symbolic rules. Errors in a task that involved maintenance of spatial rules were largely restricted to patients with MCI and were related, additionally, to right anterior cingulum microstructure. Cognitive control in MCI was also independently related to posterior parahippocampal connections. These results show how specific subpopulations of connections are critical in cognitive control and illustrate fine-grained anatomical specializations in the white matter infrastructure of this network.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.3299-12.2012