Long-range temporal correlations in resting-state α oscillations predict human timing-error dynamics

Human behavior is imperfect. This is notably clear during repetitive tasks in which sequences of errors or deviations from perfect performance result. These errors are not random, but show patterned fluctuations with long-range temporal correlations that are well described using power-law spectra P(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-07, Vol.33 (27), p.11212-11220
Hauptverfasser: Smit, Dirk J A, Linkenkaer-Hansen, Klaus, de Geus, Eco J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human behavior is imperfect. This is notably clear during repetitive tasks in which sequences of errors or deviations from perfect performance result. These errors are not random, but show patterned fluctuations with long-range temporal correlations that are well described using power-law spectra P(f)∝1/f(β), where β is the power-law scaling exponent describing the decay in temporal correlations. The neural basis of temporal correlations in such behaviors is not known. Interestingly, long-range temporal correlations are a hallmark of amplitude fluctuations in resting-state neuronal oscillations. Here, we investigated whether the temporal dynamics in brain and behavior are related. Thirty-nine subjects' eyes-open rest EEG was measured. Next, subjects reproduced without feedback a 1 s interval by tapping with their right index finger. In line with previous reports, we found evidence for the presence of long-range temporal correlations both in the amplitude modulation of resting-state oscillations in multiple frequency bands and in the timing-error sequences. Frequency scaling exponents of finger tapping and amplitude modulation of oscillations exhibited large individual differences. Neuronal dynamics of resting-state alpha-band oscillations (9-13 Hz) recorded at precentral sites strongly predicted scaling exponents of tapping behavior. The results suggest that individual variation in resting-state brain dynamics offer a neural explanation for individual variation in the error dynamics of human behavior.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.2816-12.2013