Socioeconomic Deprivation, Adverse Childhood Experiences and Medical Disorders in Adulthood: Mechanisms and Associations

Severe socioeconomic deprivation (SED) and adverse childhood experiences (ACE) are significantly associated with the development in adulthood of (i) enhanced inflammatory status and/or hypothalamic–pituitary–adrenal (HPA) axis dysfunction and (ii) neurological, neuroprogressive, inflammatory and aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2019-08, Vol.56 (8), p.5866-5890
Hauptverfasser: Morris, Gerwyn, Berk, Michael, Maes, Michael, Carvalho, André F., Puri, Basant K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Severe socioeconomic deprivation (SED) and adverse childhood experiences (ACE) are significantly associated with the development in adulthood of (i) enhanced inflammatory status and/or hypothalamic–pituitary–adrenal (HPA) axis dysfunction and (ii) neurological, neuroprogressive, inflammatory and autoimmune diseases. The mechanisms by which these associations take place are detailed. The two sets of consequences are themselves strongly associated, with the first set likely contributing to the second. Mechanisms enabling bidirectional communication between the immune system and the brain are described, including complex signalling pathways facilitated by factors at the level of immune cells. Also detailed are mechanisms underpinning the association between SED, ACE and the genesis of peripheral inflammation, including epigenetic changes to immune system-related gene expression. The duration and magnitude of inflammatory responses can be influenced by genetic factors, including single nucleotide polymorphisms, and by epigenetic factors, whereby pro-inflammatory cytokines, reactive oxygen species, reactive nitrogen species and nuclear factor-κB affect gene DNA methylation and histone acetylation and also induce several microRNAs including miR-155, miR-181b-1 and miR-146a. Adult HPA axis activity is regulated by (i) genetic factors, such as glucocorticoid receptor polymorphisms; (ii) epigenetic factors affecting glucocorticoid receptor function or expression, including the methylation status of alternative promoter regions of NR3C1 and the methylation of FKBP5 and HSD11β2 ; (iii) chronic inflammation and chronic nitrosative and oxidative stress. Finally, it is shown how severe psychological stress adversely affects mitochondrial structure and functioning and is associated with changes in brain mitochondrial DNA copy number and transcription; mitochondria can act as couriers of childhood stress into adulthood.
ISSN:0893-7648
1559-1182
1559-1182
DOI:10.1007/s12035-019-1498-1