Glucose metabolism changes during the development and progression of oral tongue squamous cell carcinomas

Previous studies have revealed several genes involved in the carcinogenesis of oral cancer. However, the detailed mechanisms underlying this process are poorly understood. Previously, we established a database cataloging the transcriptional progression profile of oral carcinogenesis and identified s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology letters 2019-08, Vol.18 (2), p.1372-1380
Hauptverfasser: Nakazato, Keiichiro, Mogushi, Kaoru, Kayamori, Kou, Tsuchiya, Maiko, Takahashi, Ken-Ichiro, Sumino, Jun, Michi, Yasuyuki, Yoda, Tetsuya, Uzawa, Narikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have revealed several genes involved in the carcinogenesis of oral cancer. However, the detailed mechanisms underlying this process are poorly understood. Previously, we established a database cataloging the transcriptional progression profile of oral carcinogenesis and identified several candidate genes with continuously increasing or decreasing expression, which specifically promote the transition of oral premalignant lesions to invasive carcinomas. In this study, using our microarray database, we attempted to determine significant genes that may contribute to metabolic alterations during oral carcinogenesis. After performing a literature survey, we focused on 15 candidate genes associated with glucose metabolism changes, particularly the tri-carboxylic acid cycle, and investigated the mRNA-expression status of these genes with our database. Only the solute carrier family 2 member 1 gene (also known as GLUT1), showed significantly increased mRNA expression during oral tumorigenesis. Immunohistochemical analysis confirmed that GLUT1 protein expression significantly increased during oral carcinogenesis. In addition, tumors with high expression of this protein significantly correlated with nodal status (P=0.002). Kaplan-Meier survival curves clearly demonstrated the adverse impact of high GLUT1 protein expression on disease-free survival (P=0.004). GLUT1 mRNA and protein expression increased in the order of normal mucosal tissues, epithelial dysplastic lesions and invasive carcinomas. Therefore, metabolic alterations, especially in glucose metabolism, occurred at the very early stage of development of oral malignancies. In addition, GLUT1 played a significant role in oral cancer, acquiring a malignant phenotype.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2019.10420