Detection and quantification of free sulfhydryls in monoclonal antibodies using maleimide labeling and mass spectrometry
The detection of free sulfhydryls in proteins can reveal incomplete disulfide bond formation, indicate cysteine residues available for conjugation, and offer insights into protein stability and structure. Traditional spectroscopic methods of free sulfhydryl detection, such as Ellman's reagent,...
Gespeichert in:
Veröffentlicht in: | mAbs 2019-05, Vol.11 (4), p.757-766 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The detection of free sulfhydryls in proteins can reveal incomplete disulfide bond formation, indicate cysteine residues available for conjugation, and offer insights into protein stability and structure. Traditional spectroscopic methods of free sulfhydryl detection, such as Ellman's reagent, generally require a relatively large amount of sample, preventing their use for the analysis of biotherapeutics early in the development cycle. These spectroscopic methods also cannot accurately determine the location of the free sulfhydryl, further limiting their utility. Mass spectrometry was used to detect free sulfhydryl residues in intact proteins after labeling with Maleimide-PEG
-Biotin. As little as 2% cysteine residues with free sulfhydryls (0.02 mol SH per mol protein) could be detected by this method. Following reduction, the free sulfhydryl abundance on antibody heavy and light chains could be measured. To determine free sulfhydryl location at peptide-level resolution, free sulfhydryls and cysteines involved in disulfide bonds were differentially labeled with N-ethylmaleimide and d
-N-ethylmaleimide, respectively. Following enzymatic digestion and nanoLC-MS, the abundance of free sulfhydryls at individual cysteine residues was quantified down to 2%. The method was optimized to avoid non-specific labeling, disulfide bond scrambling, and maleimide exchange and hydrolysis. This new workflow for free sulfhydryl analysis was used to measure the abundance and location of free sulfhydryls in 3 commercially available monoclonal antibody standards (NIST Monoclonal Antibody Reference Material (NIST), SILu™Lite SigmaMAb Universal Antibody Standard (Sigma-Aldrich) and Intact mAb Mass Check Standard (Waters)) and 1 small protein standard (β-Lactoglobulin A). |
---|---|
ISSN: | 1942-0862 1942-0870 |
DOI: | 10.1080/19420862.2019.1595307 |