Numerical and Experimental Research on Identifying a Delamination in Ballastless Slab Track
This paper aims to adopt the total focusing method (TFM) and wavenumber method for characterizing a delamination in ballastless slab track. Twelve dry point contact (DPC) transducers located at the upper surface of the slab track compose a linear array. These transducers are employed to actuate shea...
Gespeichert in:
Veröffentlicht in: | Materials 2019-06, Vol.12 (11), p.1788 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to adopt the total focusing method (TFM) and wavenumber method for characterizing a delamination in ballastless slab track. Twelve dry point contact (DPC) transducers located at the upper surface of the slab track compose a linear array. These transducers are employed to actuate shear waves, which are suitable for identifying the delamination. The technique of removing the surface wave has been implemented for only retaining the scattered wave caused by the delamination and the reflected wave from the bottom of bed plate. Numerical and experimental results demonstrate that the delamination and bottom of the bed plate can be identified by the proposed methods. Furthermore, the near-surface pseudomorphism is distinctly restrained after removing the surface wave. Compared to TFM, the wavenumber method has the great advantages of improving computational performance and lateral resolution. However, they have no significant difference in the longitudinal resolution. Furthermore, it has been confirmed that the lateral resolution can be affected by the amount of transducers. This paper can provide valuable suggestions on improving the computational performance and the imaging accuracy when we identify a delamination in ballastless slab track. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma12111788 |