Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance
Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is im...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2018-09, Vol.12 (9), p.548-553 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 9 |
container_start_page | 548 |
container_title | Nature photonics |
container_volume | 12 |
creator | Liu, Qian Zhang, Yunxiang Peng, Chunte Sam Yang, Tianshe Joubert, Lydia-Marie Chu, Steven |
description | Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm
−2
, which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10
6
variation in incident power, down to 8 W cm
−2
. A core–shell–shell (CSS) structure (NaYF
4
@NaYb
1−
x
F
4
:Er
x
@NaYF
4
) is shown to be significantly brighter than the commonly used NaY
0.78
F
4
:Yb
0.2
Er
0.02
. At 8 W cm
−2
, the 8% Er
3+
CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb
3+
content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance.
This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes. |
doi_str_mv | 10.1038/s41566-018-0217-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6599589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250617952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</originalsourceid><addsrcrecordid>eNp1kd9KHDEUxkNRqm77AL2RAW96MzUn2fy7EWRRKyx40ZZehkwms2aZTdZkR_ANeu0j9knMMnarguQige93zvlOPoS-AP4GmMrTPAXGeY1B1piAqOEDOgQxVfVUKrq3e0t2gI5yXmLMqCLkIzqgQJjkoA7R5Q8fFr2rhrWN4d6l7GOogglxbdLG26L4lVkUpjKbKg9NDbj6XdnV3z-PpPIpmdabYN0ntN-ZPrvPz_cE_bq8-Dn7Xs9vrq5n5_PaUmBQO9XKTnadw7YcUJR0VGEi-dSKTjaSYWIaIIKJtuUCS9M2QlBOseKNYZTRCTob-66HZuVa68ImmV6vU3GZHnQ0Xr9Wgr_Vi3ivOVOKlV-ZoK_PDVK8G1ze6JXP1vW9CS4OWRPCMAehGCnoyRt0GYcUynqaFEOMUoqhUDBSNsWck-t2ZgDrbUp6TEmXlPQ2Jb2tOX65xa7iXywFICOQixQWLv0f_X7XJxjpnME</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2096533301</pqid></control><display><type>article</type><title>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Qian ; Zhang, Yunxiang ; Peng, Chunte Sam ; Yang, Tianshe ; Joubert, Lydia-Marie ; Chu, Steven</creator><creatorcontrib>Liu, Qian ; Zhang, Yunxiang ; Peng, Chunte Sam ; Yang, Tianshe ; Joubert, Lydia-Marie ; Chu, Steven</creatorcontrib><description>Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm
−2
, which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10
6
variation in incident power, down to 8 W cm
−2
. A core–shell–shell (CSS) structure (NaYF
4
@NaYb
1−
x
F
4
:Er
x
@NaYF
4
) is shown to be significantly brighter than the commonly used NaY
0.78
F
4
:Yb
0.2
Er
0.02
. At 8 W cm
−2
, the 8% Er
3+
CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb
3+
content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance.
This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-018-0217-1</identifier><identifier>PMID: 31258619</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624 ; 639/925 ; Applied and Technical Physics ; Blinking ; Erbium ; Fluorides ; Formulations ; Irradiance ; Luminescence ; Migration ; Nanoparticles ; Photobleaching ; Physics ; Physics and Astronomy ; Probes ; Quantum Physics ; Sodium compounds ; Upconversion ; Ytterbium</subject><ispartof>Nature photonics, 2018-09, Vol.12 (9), p.548-553</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</citedby><cites>FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-018-0217-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-018-0217-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31258619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Zhang, Yunxiang</creatorcontrib><creatorcontrib>Peng, Chunte Sam</creatorcontrib><creatorcontrib>Yang, Tianshe</creatorcontrib><creatorcontrib>Joubert, Lydia-Marie</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><title>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><addtitle>Nat Photonics</addtitle><description>Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm
−2
, which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10
6
variation in incident power, down to 8 W cm
−2
. A core–shell–shell (CSS) structure (NaYF
4
@NaYb
1−
x
F
4
:Er
x
@NaYF
4
) is shown to be significantly brighter than the commonly used NaY
0.78
F
4
:Yb
0.2
Er
0.02
. At 8 W cm
−2
, the 8% Er
3+
CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb
3+
content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance.
This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.</description><subject>639/624</subject><subject>639/925</subject><subject>Applied and Technical Physics</subject><subject>Blinking</subject><subject>Erbium</subject><subject>Fluorides</subject><subject>Formulations</subject><subject>Irradiance</subject><subject>Luminescence</subject><subject>Migration</subject><subject>Nanoparticles</subject><subject>Photobleaching</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Probes</subject><subject>Quantum Physics</subject><subject>Sodium compounds</subject><subject>Upconversion</subject><subject>Ytterbium</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd9KHDEUxkNRqm77AL2RAW96MzUn2fy7EWRRKyx40ZZehkwms2aZTdZkR_ANeu0j9knMMnarguQige93zvlOPoS-AP4GmMrTPAXGeY1B1piAqOEDOgQxVfVUKrq3e0t2gI5yXmLMqCLkIzqgQJjkoA7R5Q8fFr2rhrWN4d6l7GOogglxbdLG26L4lVkUpjKbKg9NDbj6XdnV3z-PpPIpmdabYN0ntN-ZPrvPz_cE_bq8-Dn7Xs9vrq5n5_PaUmBQO9XKTnadw7YcUJR0VGEi-dSKTjaSYWIaIIKJtuUCS9M2QlBOseKNYZTRCTob-66HZuVa68ImmV6vU3GZHnQ0Xr9Wgr_Vi3ivOVOKlV-ZoK_PDVK8G1ze6JXP1vW9CS4OWRPCMAehGCnoyRt0GYcUynqaFEOMUoqhUDBSNsWck-t2ZgDrbUp6TEmXlPQ2Jb2tOX65xa7iXywFICOQixQWLv0f_X7XJxjpnME</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Liu, Qian</creator><creator>Zhang, Yunxiang</creator><creator>Peng, Chunte Sam</creator><creator>Yang, Tianshe</creator><creator>Joubert, Lydia-Marie</creator><creator>Chu, Steven</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201809</creationdate><title>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</title><author>Liu, Qian ; Zhang, Yunxiang ; Peng, Chunte Sam ; Yang, Tianshe ; Joubert, Lydia-Marie ; Chu, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624</topic><topic>639/925</topic><topic>Applied and Technical Physics</topic><topic>Blinking</topic><topic>Erbium</topic><topic>Fluorides</topic><topic>Formulations</topic><topic>Irradiance</topic><topic>Luminescence</topic><topic>Migration</topic><topic>Nanoparticles</topic><topic>Photobleaching</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Probes</topic><topic>Quantum Physics</topic><topic>Sodium compounds</topic><topic>Upconversion</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Zhang, Yunxiang</creatorcontrib><creatorcontrib>Peng, Chunte Sam</creatorcontrib><creatorcontrib>Yang, Tianshe</creatorcontrib><creatorcontrib>Joubert, Lydia-Marie</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qian</au><au>Zhang, Yunxiang</au><au>Peng, Chunte Sam</au><au>Yang, Tianshe</au><au>Joubert, Lydia-Marie</au><au>Chu, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><addtitle>Nat Photonics</addtitle><date>2018-09</date><risdate>2018</risdate><volume>12</volume><issue>9</issue><spage>548</spage><epage>553</epage><pages>548-553</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm
−2
, which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10
6
variation in incident power, down to 8 W cm
−2
. A core–shell–shell (CSS) structure (NaYF
4
@NaYb
1−
x
F
4
:Er
x
@NaYF
4
) is shown to be significantly brighter than the commonly used NaY
0.78
F
4
:Yb
0.2
Er
0.02
. At 8 W cm
−2
, the 8% Er
3+
CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb
3+
content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance.
This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31258619</pmid><doi>10.1038/s41566-018-0217-1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2018-09, Vol.12 (9), p.548-553 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6599589 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/624 639/925 Applied and Technical Physics Blinking Erbium Fluorides Formulations Irradiance Luminescence Migration Nanoparticles Photobleaching Physics Physics and Astronomy Probes Quantum Physics Sodium compounds Upconversion Ytterbium |
title | Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20upconversion%20nanoparticle%20imaging%20at%20sub-10%20W%20cm%E2%88%922%20irradiance&rft.jtitle=Nature%20photonics&rft.au=Liu,%20Qian&rft.date=2018-09&rft.volume=12&rft.issue=9&rft.spage=548&rft.epage=553&rft.pages=548-553&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-018-0217-1&rft_dat=%3Cproquest_pubme%3E2250617952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2096533301&rft_id=info:pmid/31258619&rfr_iscdi=true |