Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance

Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2018-09, Vol.12 (9), p.548-553
Hauptverfasser: Liu, Qian, Zhang, Yunxiang, Peng, Chunte Sam, Yang, Tianshe, Joubert, Lydia-Marie, Chu, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 9
container_start_page 548
container_title Nature photonics
container_volume 12
creator Liu, Qian
Zhang, Yunxiang
Peng, Chunte Sam
Yang, Tianshe
Joubert, Lydia-Marie
Chu, Steven
description Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10 6 variation in incident power, down to 8 W cm −2 . A core–shell–shell (CSS) structure (NaYF 4 @NaYb 1− x F 4 :Er x @NaYF 4 ) is shown to be significantly brighter than the commonly used NaY 0.78 F 4 :Yb 0.2 Er 0.02 . At 8 W cm −2 , the 8% Er 3+ CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb 3+ content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance. This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.
doi_str_mv 10.1038/s41566-018-0217-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6599589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250617952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</originalsourceid><addsrcrecordid>eNp1kd9KHDEUxkNRqm77AL2RAW96MzUn2fy7EWRRKyx40ZZehkwms2aZTdZkR_ANeu0j9knMMnarguQige93zvlOPoS-AP4GmMrTPAXGeY1B1piAqOEDOgQxVfVUKrq3e0t2gI5yXmLMqCLkIzqgQJjkoA7R5Q8fFr2rhrWN4d6l7GOogglxbdLG26L4lVkUpjKbKg9NDbj6XdnV3z-PpPIpmdabYN0ntN-ZPrvPz_cE_bq8-Dn7Xs9vrq5n5_PaUmBQO9XKTnadw7YcUJR0VGEi-dSKTjaSYWIaIIKJtuUCS9M2QlBOseKNYZTRCTob-66HZuVa68ImmV6vU3GZHnQ0Xr9Wgr_Vi3ivOVOKlV-ZoK_PDVK8G1ze6JXP1vW9CS4OWRPCMAehGCnoyRt0GYcUynqaFEOMUoqhUDBSNsWck-t2ZgDrbUp6TEmXlPQ2Jb2tOX65xa7iXywFICOQixQWLv0f_X7XJxjpnME</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2096533301</pqid></control><display><type>article</type><title>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Qian ; Zhang, Yunxiang ; Peng, Chunte Sam ; Yang, Tianshe ; Joubert, Lydia-Marie ; Chu, Steven</creator><creatorcontrib>Liu, Qian ; Zhang, Yunxiang ; Peng, Chunte Sam ; Yang, Tianshe ; Joubert, Lydia-Marie ; Chu, Steven</creatorcontrib><description>Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10 6 variation in incident power, down to 8 W cm −2 . A core–shell–shell (CSS) structure (NaYF 4 @NaYb 1− x F 4 :Er x @NaYF 4 ) is shown to be significantly brighter than the commonly used NaY 0.78 F 4 :Yb 0.2 Er 0.02 . At 8 W cm −2 , the 8% Er 3+ CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb 3+ content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance. This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-018-0217-1</identifier><identifier>PMID: 31258619</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624 ; 639/925 ; Applied and Technical Physics ; Blinking ; Erbium ; Fluorides ; Formulations ; Irradiance ; Luminescence ; Migration ; Nanoparticles ; Photobleaching ; Physics ; Physics and Astronomy ; Probes ; Quantum Physics ; Sodium compounds ; Upconversion ; Ytterbium</subject><ispartof>Nature photonics, 2018-09, Vol.12 (9), p.548-553</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</citedby><cites>FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-018-0217-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-018-0217-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31258619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Zhang, Yunxiang</creatorcontrib><creatorcontrib>Peng, Chunte Sam</creatorcontrib><creatorcontrib>Yang, Tianshe</creatorcontrib><creatorcontrib>Joubert, Lydia-Marie</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><title>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><addtitle>Nat Photonics</addtitle><description>Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10 6 variation in incident power, down to 8 W cm −2 . A core–shell–shell (CSS) structure (NaYF 4 @NaYb 1− x F 4 :Er x @NaYF 4 ) is shown to be significantly brighter than the commonly used NaY 0.78 F 4 :Yb 0.2 Er 0.02 . At 8 W cm −2 , the 8% Er 3+ CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb 3+ content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance. This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.</description><subject>639/624</subject><subject>639/925</subject><subject>Applied and Technical Physics</subject><subject>Blinking</subject><subject>Erbium</subject><subject>Fluorides</subject><subject>Formulations</subject><subject>Irradiance</subject><subject>Luminescence</subject><subject>Migration</subject><subject>Nanoparticles</subject><subject>Photobleaching</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Probes</subject><subject>Quantum Physics</subject><subject>Sodium compounds</subject><subject>Upconversion</subject><subject>Ytterbium</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd9KHDEUxkNRqm77AL2RAW96MzUn2fy7EWRRKyx40ZZehkwms2aZTdZkR_ANeu0j9knMMnarguQige93zvlOPoS-AP4GmMrTPAXGeY1B1piAqOEDOgQxVfVUKrq3e0t2gI5yXmLMqCLkIzqgQJjkoA7R5Q8fFr2rhrWN4d6l7GOogglxbdLG26L4lVkUpjKbKg9NDbj6XdnV3z-PpPIpmdabYN0ntN-ZPrvPz_cE_bq8-Dn7Xs9vrq5n5_PaUmBQO9XKTnadw7YcUJR0VGEi-dSKTjaSYWIaIIKJtuUCS9M2QlBOseKNYZTRCTob-66HZuVa68ImmV6vU3GZHnQ0Xr9Wgr_Vi3ivOVOKlV-ZoK_PDVK8G1ze6JXP1vW9CS4OWRPCMAehGCnoyRt0GYcUynqaFEOMUoqhUDBSNsWck-t2ZgDrbUp6TEmXlPQ2Jb2tOX65xa7iXywFICOQixQWLv0f_X7XJxjpnME</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Liu, Qian</creator><creator>Zhang, Yunxiang</creator><creator>Peng, Chunte Sam</creator><creator>Yang, Tianshe</creator><creator>Joubert, Lydia-Marie</creator><creator>Chu, Steven</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201809</creationdate><title>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</title><author>Liu, Qian ; Zhang, Yunxiang ; Peng, Chunte Sam ; Yang, Tianshe ; Joubert, Lydia-Marie ; Chu, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3151-e9d8f8ffe0c0c01932f3902864c7f8b8502ab12757dd6708adb77363096ba5353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624</topic><topic>639/925</topic><topic>Applied and Technical Physics</topic><topic>Blinking</topic><topic>Erbium</topic><topic>Fluorides</topic><topic>Formulations</topic><topic>Irradiance</topic><topic>Luminescence</topic><topic>Migration</topic><topic>Nanoparticles</topic><topic>Photobleaching</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Probes</topic><topic>Quantum Physics</topic><topic>Sodium compounds</topic><topic>Upconversion</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Zhang, Yunxiang</creatorcontrib><creatorcontrib>Peng, Chunte Sam</creatorcontrib><creatorcontrib>Yang, Tianshe</creatorcontrib><creatorcontrib>Joubert, Lydia-Marie</creatorcontrib><creatorcontrib>Chu, Steven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qian</au><au>Zhang, Yunxiang</au><au>Peng, Chunte Sam</au><au>Yang, Tianshe</au><au>Joubert, Lydia-Marie</au><au>Chu, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><addtitle>Nat Photonics</addtitle><date>2018-09</date><risdate>2018</risdate><volume>12</volume><issue>9</issue><spage>548</spage><epage>553</epage><pages>548-553</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10 6 variation in incident power, down to 8 W cm −2 . A core–shell–shell (CSS) structure (NaYF 4 @NaYb 1− x F 4 :Er x @NaYF 4 ) is shown to be significantly brighter than the commonly used NaY 0.78 F 4 :Yb 0.2 Er 0.02 . At 8 W cm −2 , the 8% Er 3+ CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb 3+ content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance. This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31258619</pmid><doi>10.1038/s41566-018-0217-1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2018-09, Vol.12 (9), p.548-553
issn 1749-4885
1749-4893
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6599589
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/624
639/925
Applied and Technical Physics
Blinking
Erbium
Fluorides
Formulations
Irradiance
Luminescence
Migration
Nanoparticles
Photobleaching
Physics
Physics and Astronomy
Probes
Quantum Physics
Sodium compounds
Upconversion
Ytterbium
title Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20upconversion%20nanoparticle%20imaging%20at%20sub-10%20W%20cm%E2%88%922%20irradiance&rft.jtitle=Nature%20photonics&rft.au=Liu,%20Qian&rft.date=2018-09&rft.volume=12&rft.issue=9&rft.spage=548&rft.epage=553&rft.pages=548-553&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-018-0217-1&rft_dat=%3Cproquest_pubme%3E2250617952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2096533301&rft_id=info:pmid/31258619&rfr_iscdi=true