Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance

Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2018-09, Vol.12 (9), p.548-553
Hauptverfasser: Liu, Qian, Zhang, Yunxiang, Peng, Chunte Sam, Yang, Tianshe, Joubert, Lydia-Marie, Chu, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm −2 , which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 10 6 variation in incident power, down to 8 W cm −2 . A core–shell–shell (CSS) structure (NaYF 4 @NaYb 1− x F 4 :Er x @NaYF 4 ) is shown to be significantly brighter than the commonly used NaY 0.78 F 4 :Yb 0.2 Er 0.02 . At 8 W cm −2 , the 8% Er 3+ CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb 3+ content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance. This systematic study of upconversion nanoparticles reveals power-dependent luminescence and paves the way towards ideal single-molecule and cellular probes.
ISSN:1749-4885
1749-4893
DOI:10.1038/s41566-018-0217-1