Probing non-perturbative QED with electron-laser collisions

The vast majority of QED results are obtained in relatively weak fields and so in the framework of perturbation theory. However, forthcoming laser facilities providing extremely high fields can be used to enter not-yet-studied regimes. Here, a scheme is proposed that might be used to reach a supercr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-06, Vol.9 (1), p.9407-8, Article 9407
Hauptverfasser: Baumann, C., Nerush, E. N., Pukhov, A., Kostyukov, I. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vast majority of QED results are obtained in relatively weak fields and so in the framework of perturbation theory. However, forthcoming laser facilities providing extremely high fields can be used to enter not-yet-studied regimes. Here, a scheme is proposed that might be used to reach a supercritical regime of radiation reaction or even the fully non-perturbative regime of quantum electrodynamics. The scheme considers the collision of a 100 GeV-class electron beam with a counterpropagating ultraintense electromagnetic pulse. To reach these supercritical regimes, it is unavoidable to use a pulse with ultrashort duration. Using two-dimensional particle-in-cell simulations, it is therefore shown how one can convert a next-generation optical laser to an ultraintense ( I  ≈ 2.9 × 10 24 Wcm −2 ) attosecond (duration ≈ 150 as) pulse. It is shown that if the perturbation theory persists in extreme fields, the spectrum of secondary particles can be found semi-analytically. In contrast, a comparison with experimental data may allow differentiating the contribution of high-order radiative corrections if the perturbation theory breaks.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-45582-5