Gigacycle fatigue in high strength steels

This paper reviews the research results to date on gigacycle fatigue caused by internal fractures in high strength steels. Firstly, accelerated fatigue testing was realized using ultrasonic fatigue testing at 20 kHz, which completes 10 9 cycles in one day, unlike the 3-4 months needed for convention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science and technology of advanced materials 2019-12, Vol.20 (1), p.643-656
Hauptverfasser: Furuya, Yoshiyuki, Hirukawa, Hisashi, Takeuchi, Etsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reviews the research results to date on gigacycle fatigue caused by internal fractures in high strength steels. Firstly, accelerated fatigue testing was realized using ultrasonic fatigue testing at 20 kHz, which completes 10 9 cycles in one day, unlike the 3-4 months needed for conventional fatigue testing. Although the frequency effect was anticipated to be problematic, it proved negligible under conditions in which internal fractures occurred. Later, many unique characteristics of internal fractures were elucidated. For example, hydrogen has dramatically greater effects on internal fractures than on conventional surface fractures. Mean stress effects are more serious in titanium alloys than in high strength steels. Size effects were notable in high strength steels. These distinctive characteristics required a unique model to be able to predict gigacycle fatigue strength, which first required elucidation of its mechanisms. To this aim, the author attempted to measure the crack growth rates of small internal cracks using the beach mark method. The results revealed that the crack growth of small internal cracks controls internal fractures. In calculating the crack growth life, however, it was found that the conventional crack growth law overestimates the effects of inclusion size. To rectify this problem, a new model using a new crack growth law was proposed, which predicts more realistic fatigue life curves. As a result, predictions were derived for several grades of high strength steels.
ISSN:1468-6996
1878-5514
DOI:10.1080/14686996.2019.1610904