Anomalous strain energy transformation pathways in mechanical metamaterials

This discussion starts with a mechanics version of Parseval's energy theorem applicable to any discrete lattice material with periodic internal structure: a microtruss, grid, frame, origami or tessellation. It provides a simple relationship between the strain energy volumetric/usual and distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2019-06, Vol.475 (2226), p.20190041-20190041
Hauptverfasser: Karpov, Eduard G, Danso, Larry A, Klein, John T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This discussion starts with a mechanics version of Parseval's energy theorem applicable to any discrete lattice material with periodic internal structure: a microtruss, grid, frame, origami or tessellation. It provides a simple relationship between the strain energy volumetric/usual and distributions in the reciprocal space. The spectral energy distribution leads directly to a spectral entropy of lattice deformation (Shannon's type), whose variance with a material coordinate represents the decrease of information about surface loads in the material interior. Spectral entropy is also a basic measure of complexity of mechanical responses of metamaterials to surface and body loads. Considering transformation of the energy volumetric and spectral distributions with a material coordinate pointed away from a surface load, several interesting anomalies are seen even for simple lattice materials, when compared to continuum materials. These anomalies include selective filtering of surface Raleigh waves (sinusoidal pressure patterns), Saint-Venant effect inversion illustrated by energy spectral distribution contours, occurrence of 'hiding pockets' of low deformation, and redirection of strain energy maximum away from axis of a concentrated surface load. The latter phenomenon can be significant for impact protection applications of mechanical metamaterials.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2019.0041