Using Temporal Features to Provide Data-Driven Clinical Early Warnings for Chronic Obstructive Pulmonary Disease and Asthma Care Management: Protocol for a Secondary Analysis

Both chronic obstructive pulmonary disease (COPD) and asthma incur heavy health care burdens. To support tailored preventive care for these 2 diseases, predictive modeling is widely used to give warnings and to identify patients for care management. However, 3 gaps exist in current modeling methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JMIR research protocols 2019-06, Vol.8 (6), p.e13783-e13783
Hauptverfasser: Luo, Gang, Stone, Bryan L, Koebnick, Corinna, He, Shan, Au, David H, Sheng, Xiaoming, Murtaugh, Maureen A, Sward, Katherine A, Schatz, Michael, Zeiger, Robert S, Davidson, Giana H, Nkoy, Flory L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both chronic obstructive pulmonary disease (COPD) and asthma incur heavy health care burdens. To support tailored preventive care for these 2 diseases, predictive modeling is widely used to give warnings and to identify patients for care management. However, 3 gaps exist in current modeling methods owing to rarely factoring in temporal aspects showing trends and early health change: (1) existing models seldom use temporal features and often give late warnings, making care reactive. A health risk is often found at a relatively late stage of declining health, when the risk of a poor outcome is high and resolving the issue is difficult and costly. A typical model predicts patient outcomes in the next 12 months. This often does not warn early enough. If a patient will actually be hospitalized for COPD next week, intervening now could be too late to avoid the hospitalization. If temporal features were used, this patient could potentially be identified a few weeks earlier to institute preventive therapy; (2) existing models often miss many temporal features with high predictive power and have low accuracy. This makes care management enroll many patients not needing it and overlook over half of the patients needing it the most; (3) existing models often give no information on why a patient is at high risk nor about possible interventions to mitigate risk, causing busy care managers to spend more time reviewing charts and to miss suited interventions. Typical automatic explanation methods cannot handle longitudinal attributes and fully address these issues. To fill these gaps so that more COPD and asthma patients will receive more appropriate and timely care, we will develop comprehensible data-driven methods to provide accurate early warnings of poor outcomes and to suggest tailored interventions, making care more proactive, efficient, and effective. By conducting a secondary data analysis and surveys, the study will: (1) use temporal features to provide accurate early warnings of poor outcomes and assess the potential impact on prediction accuracy, risk warning timeliness, and outcomes; (2) automatically identify actionable temporal risk factors for each patient at high risk for future hospital use and assess the impact on prediction accuracy and outcomes; and (3) assess the impact of actionable information on clinicians' acceptance of early warnings and on perceived care plan quality. We are obtaining clinical and administrative datasets from 3 leading health c
ISSN:1929-0748
1929-0748
DOI:10.2196/13783