Multi‐omics integrative analysis identified SNP‐methylation‐mRNA: Interaction in peripheral blood mononuclear cells
Genetic variants have potential influence on DNA methylation and thereby regulate mRNA expression. This study aimed to comprehensively reveal the relationships among SNP, methylation and mRNA, and identify methylation‐mediated regulation patterns in human peripheral blood mononuclear cells (PBMCs)....
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2019-07, Vol.23 (7), p.4601-4610 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genetic variants have potential influence on DNA methylation and thereby regulate mRNA expression. This study aimed to comprehensively reveal the relationships among SNP, methylation and mRNA, and identify methylation‐mediated regulation patterns in human peripheral blood mononuclear cells (PBMCs). Based on in‐house multi‐omics datasets from 43 Chinese Han female subjects, genome‐wide association trios were constructed by simultaneously testing the following three association pairs: SNP‐methylation, methylation‐mRNA and SNP‐mRNA. Causal inference test (CIT) was used to identify methylation‐mediated genetic effects on mRNA. A total of 64,184 significant cis‐methylation quantitative trait loci (meQTLs) were identified (FDR |
---|---|
ISSN: | 1582-1838 1582-4934 |
DOI: | 10.1111/jcmm.14315 |