Correspondence of Escape-Turning Behavior with Activity of Descending Mechanosensory Interneurons in the Cockroach, Periplaneta americana
Two bilaterally paired mechanosensory neurons that respond to antennal touch stimulation recently have been described in the cockroach Periplaneta americana. Here chronic recordings were used to describe the activity of these interneurons in relation to behavior. Parallel intra/extracellular recordi...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 1996-09, Vol.16 (18), p.5844-5853 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two bilaterally paired mechanosensory neurons that respond to antennal touch stimulation recently have been described in the cockroach Periplaneta americana. Here chronic recordings were used to describe the activity of these interneurons in relation to behavior. Parallel intra/extracellular recording experiments showed that both pairs of previously identified descending mechanosensory interneurons (DMIs) were activated after touch stimulation of the antennae and before initiation of escape. On a trial-by-trial basis, the bilateral pattern of their activity was correlated with sensory input and behavior: when one antenna was touched, the contralateral DMI axons displayed impulses earlier and in greater numbers than their ipsilateral homologs; turns were made toward the side with greater DMI activity, i.e., away from the touched antenna. One parameter of DMI activity (the bilateral difference in number of DMI impulses) was correlated with the angular amplitude of turning. In the absence of touch stimulation, unilateral electrical stimulation of a cervical connective via the chronic electrodes produced turning movements similar to natural escape turning and of appropriate directionality. These results support the hypothesis that neural activity in DMIs is involved in the control of antennal touch-evoked escape, and they provide a basis for a model of DMI specification of the direction of escape turning. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.16-18-05844.1996 |