Preferential Interaction of omega -Conotoxins with Inactivated N-type Ca2+ Channels

The selective block of N-type Ca2+ channels by omega-conotoxins has been a hallmark of these channels, critical in delineating their biological roles and molecular characteristics. Here we report that the omega-conotoxin-channel interaction depends strongly on channel gating. N-type channels (alpha1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1997-05, Vol.17 (9), p.3002-3013
Hauptverfasser: Stocker, Jonathan W, Nadasdi, Laszlo, Aldrich, Richard W, Tsien, Richard W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The selective block of N-type Ca2+ channels by omega-conotoxins has been a hallmark of these channels, critical in delineating their biological roles and molecular characteristics. Here we report that the omega-conotoxin-channel interaction depends strongly on channel gating. N-type channels (alpha1B, alpha2, and beta1) expressed in Xenopus oocytes were blocked with a variety of omega-conotoxins, including omega-CTx-GVIA, omega-CTx-MVIIA, and SNX-331, a derivative of omega-CTx-MVIIC. Changes in holding potential (HP) markedly altered the severity of toxin block and the kinetics of its onset and removal. Notably, strong hyperpolarization renders omega-conotoxin block completely reversible. These effects could be accounted for by a modulated receptor model, in which toxin dissociation from the inactivated state is approximately 60-fold slower than from the resting state. Because omega-conotoxins act exclusively outside cells, our results suggest that voltage-dependent inactivation of Ca2+ channels must be associated with an externally detectable conformational change.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.17-09-03002.1997