Preferential Interaction of omega -Conotoxins with Inactivated N-type Ca2+ Channels
The selective block of N-type Ca2+ channels by omega-conotoxins has been a hallmark of these channels, critical in delineating their biological roles and molecular characteristics. Here we report that the omega-conotoxin-channel interaction depends strongly on channel gating. N-type channels (alpha1...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 1997-05, Vol.17 (9), p.3002-3013 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The selective block of N-type Ca2+ channels by omega-conotoxins has been a hallmark of these channels, critical in delineating their biological roles and molecular characteristics. Here we report that the omega-conotoxin-channel interaction depends strongly on channel gating. N-type channels (alpha1B, alpha2, and beta1) expressed in Xenopus oocytes were blocked with a variety of omega-conotoxins, including omega-CTx-GVIA, omega-CTx-MVIIA, and SNX-331, a derivative of omega-CTx-MVIIC. Changes in holding potential (HP) markedly altered the severity of toxin block and the kinetics of its onset and removal. Notably, strong hyperpolarization renders omega-conotoxin block completely reversible. These effects could be accounted for by a modulated receptor model, in which toxin dissociation from the inactivated state is approximately 60-fold slower than from the resting state. Because omega-conotoxins act exclusively outside cells, our results suggest that voltage-dependent inactivation of Ca2+ channels must be associated with an externally detectable conformational change. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.17-09-03002.1997 |