The Effects of Pavement Types on Soil Bacterial Communities across Different Depths

Pavements have remarkable effects on topsoil micro-organisms, but it remains unclear how subsoil microbial communities respond to pavements. In this study, ash trees ( ) were planted on pervious pavement (PP), impervious pavement (IPP), and non-pavement (NP) plots. After five years, we determined th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2019-05, Vol.16 (10), p.1805
Hauptverfasser: Yu, Weiwei, Hu, Yinhong, Cui, Bowen, Chen, Yuanyuan, Wang, Xiaoke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pavements have remarkable effects on topsoil micro-organisms, but it remains unclear how subsoil microbial communities respond to pavements. In this study, ash trees ( ) were planted on pervious pavement (PP), impervious pavement (IPP), and non-pavement (NP) plots. After five years, we determined the soil bacterial community composition and diversity by high-throughput sequencing of the bacterial 16S rRNA gene. The results of our field experiment reveal that the presence of pavement changed soil bacterial community composition and decreased the Shannon index, but had no impact on the Chao 1 at the 0-20 cm layer. However, we achieved the opposite result at a depth of 20-80 cm. Furthermore, there was a significant difference in bacterial community composition using the Shannon index and the Chao 1 at the 80-100 cm layer. Soil total carbon (TC), total nitrogen (TN), available phosphorus (AP), NO -N, and available potassium (AK) were the main factors that influenced soil bacterial composition and diversity across different pavements. Soil bacterial composition and diversity had no notable difference between PP and IPPs at different soil layers. Our results strongly indicate that pavements have a greater impact on topsoil bacterial communities than do subsoils, and PPs did not provide a better habitat for micro-organisms when compared to IPPs in the short term.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph16101805