Synaptic Depotentiation and mGluR5 Activity in the Nucleus Accumbens Drive Cocaine-Primed Reinstatement of Place Preference

Understanding the neurobiological processes that incite drug craving and drive relapse has the potential to help target efforts to treat addiction. The NAc serves as a critical substrate for reward and motivated behavior, in part due to alterations in excitatory synaptic strength within cortical-acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2019-06, Vol.39 (24), p.4785-4796
Hauptverfasser: Benneyworth, Michael A, Hearing, Matthew C, Asp, Anders J, Madayag, Aric, Ingebretson, Anna E, Schmidt, Clare E, Silvis, Keelia A, Larson, Erin B, Ebner, Stephanie R, Thomas, Mark J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the neurobiological processes that incite drug craving and drive relapse has the potential to help target efforts to treat addiction. The NAc serves as a critical substrate for reward and motivated behavior, in part due to alterations in excitatory synaptic strength within cortical-accumbens pathways. The present studies investigated a causal link between cocaine-induced reinstatement of conditioned place preference and rapid reductions of cocaine-dependent increases in NAc shell synaptic strength in male mice. Cocaine-conditioned place preference behavior and whole-cell electrophysiology showed that cocaine-primed reinstatement and synaptic depotentiation were disrupted by inhibiting AMPAR internalization via intra-NAc shell infusion of a Tat-GluA2 peptide. Furthermore, reinstatement was driven by an mGluR5-dependent reduction in AMPAR signaling. Intra-NAc shell infusion of the mGluR5 antagonist MTEP blocked cocaine-primed reinstatement and corresponding depotentiation, whereas infusion of the mGluR5 agonist CHPG itself promoted reinstatement and depotentiated synaptic strength in the NAc shell. Optogenetic examination of circuit-specific plasticity showed that inhibition of infralimbic cortical input to the NAc shell blocked cocaine-primed reinstatement, whereas low-frequency stimulation (10 Hz) of this pathway in the absence of cocaine triggered a reduction in synaptic strength akin to that observed with cocaine, and was sufficient to promote reinstatement in the absence of a cocaine challenge. These data support a model in which mGluR5-mediated reduction in GluA2-containing AMPARs at NAc shell synapses receiving input from the infralimbic cortex is a critical factor in triggering reinstatement of cocaine-primed conditioned approach behavior. These studies identified a sequence of neural events whereby reexposure to cocaine activates a signaling cascade that alters synaptic strength in the NAc shell and triggers a behavioral response driven by a drug-associated memory.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.3020-17.2019