The in vivo chondrogenesis of cartilage stem/progenitor cells from auricular cartilage and the perichondrium
Bone marrow-derived stem cells are commonly studied for cartilage tissue engineering and regeneration medicine applications, but their ossification tendency and their limited capacity for chondrogenic differentiation depending on the donor age limit their clinical application. Cartilage stem/progeni...
Gespeichert in:
Veröffentlicht in: | American journal of translational research 2019-01, Vol.11 (5), p.2855-2865 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bone marrow-derived stem cells are commonly studied for cartilage tissue engineering and regeneration medicine applications, but their ossification tendency and their limited capacity for chondrogenic differentiation depending on the donor age limit their clinical application. Cartilage stem/progenitor cells are ideal seeding cells, as cartilage stem/progenitor cells from auricular cartilage and the perichondrium have the inherent advantages of chondrogenesis capacity and an easy and nontraumatic harvesting process, displaying promise for applications. The identification and comparison of cartilage stem/progenitor cells from auricular cartilage and the perichondrium in vitro were explored in our previous study, but the in vivo chondrogenesis of these cells has not been fully examined. In the current study, we explored the ectopic chondrogenesis of cartilage stem progenitor/cells from auricular cartilage and the perichondrium after chondrogenic induction in vitro. Our results suggest that stem/progenitor cells from auricular cartilage exhibit significantly better chondrogenesis than those from the perichondrium in vivo, with upregulated chondrogenic genes and a stable cartilage phenotype, as well as good mechanical properties, indicating that stem/progenitor cells from auricular cartilage could be one type of ideal seeding cells for cartilage tissue engineering. |
---|---|
ISSN: | 1943-8141 1943-8141 |