On-target Resistance to the Mutant-Selective EGFR Inhibitor Osimertinib Can Develop in an Allele-Specific Manner Dependent on the Original EGFR-Activating Mutation

The third-generation EGFR inhibitor, osimertinib, is the first mutant-selective inhibitor that has received regulatory approval for the treatment of patients with -mutant lung cancer. Despite the development of highly selective third-generation inhibitors, acquired resistance remains a significant c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2019-06, Vol.25 (11), p.3341-3351
Hauptverfasser: Brown, Benjamin P, Zhang, Yun-Kai, Westover, David, Yan, Yingjun, Qiao, Huan, Huang, Vincent, Du, Zhenfang, Smith, Jarrod A, Ross, Jeffrey S, Miller, Vincent A, Ali, Siraj, Bazhenova, Lyudmila, Schrock, Alexa B, Meiler, Jens, Lovly, Christine M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The third-generation EGFR inhibitor, osimertinib, is the first mutant-selective inhibitor that has received regulatory approval for the treatment of patients with -mutant lung cancer. Despite the development of highly selective third-generation inhibitors, acquired resistance remains a significant clinical challenge. Recently, we and others have identified a novel osimertinib resistance mutation, G724S, which was not predicted in screens. Here, we investigate how G724S confers resistance to osimertinib. We combine structure-based predictive modeling of G724S in combination with the 2 most common EGFR-activating mutations, exon 19 deletion (Ex19Del) and L858R, with drug-response models and patient genomic profiling. Our simulations suggest that the G724S mutation selectively reduces osimertinib-binding affinity in the context of Ex19Del. Consistent with our simulations, cell lines transduced with Ex19Del/G724S demonstrate resistance to osimertinib, whereas cells transduced with L858R/G724S are sensitive to osimertinib. Subsequent clinical genomic profiling data further suggest G724S occurs with Ex19Del but not L858R. Furthermore, we demonstrate that Ex19Del/G724S retains sensitivity to afatinib, but not to erlotinib, suggesting a possible therapy for patients at the time of disease relapse. Altogether, these data suggest that G724S is an allele-specific resistance mutation emerging in the context of Ex19Del but not L858R. Our results fundamentally reframe the problem of targeted therapy resistance from one focused on the "drug-resistance mutation" pair to one focused on the "activating mutation-drug-resistance mutation" trio. This has broad implications across clinical oncology.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-18-3829