Extracellular Processing of Lysyl Oxidase-like 2 and Its Effect on Amine Oxidase Activity

Overexpression of lysyl oxidase-like 2 (LOXL2) is associated with several hepatic and vascular fibrotic diseases and tumor progression in some aggressive cancers. Secreted LOXL2 promotes extracellular matrix cross-linking by catalyzing the oxidative deamination of peptidyl lysine. A great deal remai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2018-12, Vol.57 (51), p.6973-6983
Hauptverfasser: Okada, Kazushi, Moon, Hee-Jung, Finney, Joel, Meier, Alex, Mure, Minae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overexpression of lysyl oxidase-like 2 (LOXL2) is associated with several hepatic and vascular fibrotic diseases and tumor progression in some aggressive cancers. Secreted LOXL2 promotes extracellular matrix cross-linking by catalyzing the oxidative deamination of peptidyl lysine. A great deal remains to be learned about the post-translational modifications of LOXL2, including whether such modifications modulate enzymatic and disease-promoting activities; such knowledge would inform the development of potential therapies. We discovered that upon secretion in cell culture, LOXL2 undergoes proteolytic processing of the first two of four scavenger receptor cysteine-rich domains at the N-terminus. A similar pattern of processing was also evident in tissue extracts from an invasive ductal carcinoma patient. Processing occurred at 314 Arg-315Phe- 316 Arg- 317 Lys↓-318Ala-, implicating proprotein convertases. siRNA-mediated knockdown of proprotein convertases (furin, PACE4, and PC5/6), as well as incubation with their recombinant forms, showed that PACE4 is the major protease that acts on extracellular LOXL2. Unlike LOX, which requires cleavage of its propeptide for catalytic activation, cleavage of LOXL2 was not essential for tropoelastin oxidation or for cross-linking of collagen type IV in vitro. However, in the latter case, processing enhanced the extent of collagen cross-linking ∼2-fold at ≤10 nM LOXL2. These results demonstrate an important difference in the regulatory mechanisms for LOX and LOXL2 catalytic activity. Moreover, they pave the way for further studies of potential differential functions of LOXL2 isoforms in fibrosis and tumor progression.
ISSN:0006-2960
1520-4995
DOI:10.1021/acs.biochem.8b01008