Experimental study on removing heavy metals from the municipal solid waste incineration fly ash with the modified electrokinetic remediation device

The MSWI fly ash which contains a large number of heavy metal substances is a subsidiary product of waste incineration power generation technology. If the MSWI fly ash is disposed improperly, heavy metal pollutants will pose a great threat to environmental safety and human health. Based on the techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-06, Vol.9 (1), p.8271, Article 8271
Hauptverfasser: Ji, Hong, Huang, Weiqiu, Xing, Zhixiang, Zuo, Jiaqi, Wang, Zhuang, Yang, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The MSWI fly ash which contains a large number of heavy metal substances is a subsidiary product of waste incineration power generation technology. If the MSWI fly ash is disposed improperly, heavy metal pollutants will pose a great threat to environmental safety and human health. Based on the technology of electrokinetic remediation, the feasibility of removing heavy metal pollutants from the MSWI fly ash using a modified electrokinetic remediation device - cylinder device was evaluated in this study. Differing from the traditional cuboid device with the volume ratio of the cathode chamber to the anode chamber being 1:1, the volume ratio of the cathode chamber to the anode chamber of the cylinder device was 16:1. Changes in parameters, such as pH values and conductivity in the cathode and the anode chambers as well as current and voltage in the sample area were analysed under the voltage gradient of 2 V/cm. After the experiment, the average removal efficiencies for Zn, Pb, Cd and Cu in the sample area were 53.2%, 31.4%, 42.3% and 30.7%, respectively. It indicates that the cylinder device is effective in removing heavy metals from the MSWI fly ash. Adopting the cylinder device for the experimental study on the electrokinetic remediation technology could provide a better way of thinking for the future engineering practices and applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-43844-w