Illumina ® Sequencing Reveals Candidate Genes of Carotenoid Metabolism in Three Pummelo Cultivars ( Citrus Maxima ) with Different Pulp Color

Pummelo ( ) is one of important fruit trees, which belongs to species. The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid. Our results clearly showed that 'Huangjinmiyou' (HJMY) has the highest content of β-carotene, followed by 'H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-05, Vol.20 (9), p.2246
Hauptverfasser: Jiang, Cui-Cui, Zhang, Yan-Fang, Lin, Yan-Jin, Chen, Yuan, Lu, Xin-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pummelo ( ) is one of important fruit trees, which belongs to species. The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid. Our results clearly showed that 'Huangjinmiyou' (HJMY) has the highest content of β-carotene, followed by 'Hongroumiyou' (HRMY) and 'Guanximiyou' (GXMY). Lycopene is dominantly accumulated in HRMY. However, the molecular mechanism underlying the carotenoid accumulation in pummelo flesh is not fully understood. In this study, we used the RNA-Seq technique to investigate the candidate genes of carotenoid metabolism in the flesh of pummelo cv. GXMY and its mutants HRMY and HJMY in three development periods of fruit. After data assembly and bioinformatic analysis, a total of 357 genes involved in biosynthesis of secondary metabolites were isolated, of which 12 differentially expressed genes (DEGs) are involved in carotenoid biosynthesis. Among these 12 DEGs, phytoene synthase ( ), lycopene β-cyclase ( ), lycopene Ɛ-cyclase ( ), carotenoid cleavage dioxygenases ( ), 9-cis-epoxycarotenoid dioxygenase ( ), aldehyde oxidase 3 ( ), and ABA 8'-hydroxylases ( ) are the most distinct DEGs in three pummelo cultivars. The co-expression analysis revealed that the expression patterns of several transcription factors such as , , , and are highly correlated with DEGs, which are involved in carotenoid biosynthesis. In addition, the expression patterns of 22 DEGs were validated by real-time quantitative PCR (RT-qPCR) and the results are highly concordant with the RNA-Seq results. Our results provide a global vision of transcriptomic profile among three pummelo cultivars with different pulp colors. These results would be beneficial to further study the molecular mechanism of carotenoid accumulation in pummelo flesh and help the breeding of citrus with high carotenoid content.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20092246