Absence of recipient C3aR1 signaling limits expansion and differentiation of alloreactive CD8+ T cell immunity and prolongs murine cardiac allograft survival
Activation, differentiation, and expansion of alloreactive CD8+ T cells, the dominant effectors that mediate murine heart allograft rejection, requires allorecognition, costimulation, and cytokine-initiated signals. While previous work showed that alloreactive CD4+ T cell immunity entails immune cel...
Gespeichert in:
Veröffentlicht in: | American journal of transplantation 2019-06, Vol.19 (6), p.1628-1640 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activation, differentiation, and expansion of alloreactive CD8+ T cells, the dominant effectors that mediate murine heart allograft rejection, requires allorecognition, costimulation, and cytokine-initiated signals. While previous work showed that alloreactive CD4+ T cell immunity entails immune cell-produced and locally activated complement, whether and how C3a receptor 1 (C3aR1) signaling impacts transplant outcomes and the mechanisms linking C3aR1 to alloreactive CD8+ T cell activation/expansion remain unclear. Herein we show that recipient C3aR1 deficiency or pharmacological C3aR1 blockade synergizes with tacrolimus to significantly prolong allograft survival versus tacrolimus-treated controls (median survival time 21 vs. 14 days, P < .05). Recipient C3aR1-deficiency reduced the frequencies of posttransplant, donor-reactive CD8+ T cells twofold. Reciprocal adoptive transfers of naive WT or C3ar1−/− CD8+ T cells into syngeneic WT or C3ar1−/− allograft recipients showed that T cell–expressed C3aR1 induces CD8+ T proliferation, mTOR activation and transcription factor T-bet expression. Host C3aR1 indirectly facilitates alloreactive CD8+ T cell proliferation/expansion by amplifying antigen presenting cell costimulatory molecule expression and innate cytokine production. In addition to expanding mechanistic insight, our findings identify C3aR1 as a testable therapeutic target for future studies aimed at improving human transplant outcomes. |
---|---|
ISSN: | 1600-6135 1600-6143 |
DOI: | 10.1111/ajt.15222 |