Biophysical Modeling of Large-Scale Brain Dynamics and Applications for Computational Psychiatry

Noninvasive neuroimaging has revolutionized the study of the organization of the human brain and how its structure and function are altered in psychiatric disorders. A critical explanatory gap lies in our mechanistic understanding of how systems-level neuroimaging biomarkers emerge from underlying s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological psychiatry : cognitive neuroscience and neuroimaging 2018-09, Vol.3 (9), p.777-787
Hauptverfasser: Murray, John D., Demirtaş, Murat, Anticevic, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noninvasive neuroimaging has revolutionized the study of the organization of the human brain and how its structure and function are altered in psychiatric disorders. A critical explanatory gap lies in our mechanistic understanding of how systems-level neuroimaging biomarkers emerge from underlying synaptic-level perturbations associated with a disease state. We describe an emerging computational psychiatry approach leveraging biophysically based computational models of large-scale brain dynamics and their potential integration with clinical and pharmacological neuroimaging. In particular, we focus on neural circuit models, which describe how patterns of functional connectivity observed in resting-state functional magnetic resonance imaging emerge from neural dynamics shaped by inter-areal interactions through underlying structural connectivity defining long-range projections. We highlight the importance of local circuit physiological dynamics, in combination with structural connectivity, in shaping the emergent functional connectivity. Furthermore, heterogeneity of local circuit properties across brain areas, which impacts large-scale dynamics, may be critical for modeling whole-brain phenomena and alterations in psychiatric disorders and pharmacological manipulation. Finally, we discuss important directions for future model development and biophysical extensions, which will expand their utility to link clinical neuroimaging to neurobiological mechanisms.
ISSN:2451-9022
2451-9030
2451-9030
DOI:10.1016/j.bpsc.2018.07.004