Comprehensive Characterization of Cerebrovascular Dysfunction in Blast Traumatic Brain Injury Using Photoacoustic Microscopy
Blast traumatic brain injury (bTBI) is a leading contributor to combat-related injuries and death. Although substantial emphasis has been placed on blast-induced neuronal and axonal injuries, co-existing dysfunctions in the cerebral vasculature, particularly the microvasculature, remain poorly under...
Gespeichert in:
Veröffentlicht in: | Journal of neurotrauma 2019-05, Vol.36 (10), p.1526-1534 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blast traumatic brain injury (bTBI) is a leading contributor to combat-related injuries and death. Although substantial emphasis has been placed on blast-induced neuronal and axonal injuries, co-existing dysfunctions in the cerebral vasculature, particularly the microvasculature, remain poorly understood. Here, we studied blast-induced cerebrovascular dysfunctions in a rat model of bTBI (blast overpressure: 187.8 ± 18.3 kPa). Using photoacoustic microscopy (PAM), we quantified changes in cerebral hemodynamics and metabolism-including blood perfusion, oxygenation, flow, oxygen extraction fraction, and the metabolic rate of oxygen-4 h post-injury. Moreover, we assessed the effect of blast exposure on cerebrovascular reactivity (CVR) to vasodilatory stimulation. With vessel segmentation, we extracted these changes at the single-vessel level, revealing their dependence on vessel type (i.e., artery vs. vein) and diameter. We found that bTBI at this pressure level did not induce pronounced baseline changes in cerebrovascular diameter, blood perfusion, oxygenation, flow, oxygen extraction, and metabolism, except for a slight sO
increase in small veins ( |
---|---|
ISSN: | 0897-7151 1557-9042 |
DOI: | 10.1089/neu.2018.6062 |