Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease

Isocitrate dehydrogenases (IDHs) are critical metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG), NAD(P)H, and CO . IDHs epigenetically control gene expression through effects on αKG-dependent dioxygenases, maintain redox balance and promote anaplero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2019-05, Vol.5 (5), p.eaaw4543
Hauptverfasser: Tommasini-Ghelfi, Serena, Murnan, Kevin, Kouri, Fotini M, Mahajan, Akanksha S, May, Jasmine L, Stegh, Alexander H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isocitrate dehydrogenases (IDHs) are critical metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG), NAD(P)H, and CO . IDHs epigenetically control gene expression through effects on αKG-dependent dioxygenases, maintain redox balance and promote anaplerosis by providing cells with NADPH and precursor substrates for macromolecular synthesis, and regulate respiration and energy production through generation of NADH. Cancer-associated mutations in and represent one of the most comprehensively studied mechanisms of IDH pathogenic effect. Mutant enzymes produce ( )-2-hydroxyglutarate, which in turn inhibits αKG-dependent dioxygenase function, resulting in a global hypermethylation phenotype, increased tumor cell multipotency, and malignancy. Recent studies identified wild-type IDHs as critical regulators of normal organ physiology and, when transcriptionally induced or down-regulated, as contributing to cancer and neurodegeneration, respectively. We describe how mutant and wild-type enzymes contribute on molecular levels to disease pathogenesis, and discuss efforts to pharmacologically target IDH-controlled metabolic rewiring.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aaw4543