High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins
Efficient gene deletion methods are essential for the high-throughput study of gene function. Compared to most ascomycete model systems, gene deletion is more laborious in mushroom-forming basidiomycetes due to the relatively low incidence of homologous recombination (HR) and relatively high inciden...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-05, Vol.9 (1), p.7632, Article 7632 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient gene deletion methods are essential for the high-throughput study of gene function. Compared to most ascomycete model systems, gene deletion is more laborious in mushroom-forming basidiomycetes due to the relatively low incidence of homologous recombination (HR) and relatively high incidence of non-homologous end-joining (NHEJ). Here, we describe the use of pre-assembled Cas9-sgRNA ribonucleoproteins (RNPs) to efficiently delete the homeodomain transcription factor gene
hom2
in the mushroom-forming basidiomycete
Schizophyllum commune
by replacing it with a selectable marker. All components (Cas9 protein, sgRNA, and repair template with selectable marker) were supplied to wild type protoplasts by PEG-mediated transformation, abolishing the need to optimize the expression of
cas9
and sgRNAs. A
Δku80
background further increased the efficiency of gene deletion. A repair template with homology arms of 250 bp was sufficient to efficiently induce homologous recombination. This is the first report of the use of pre-assembled Cas9 RNPs in a mushroom-forming basidiomycete and this approach may also improve the genetic accessibility of non-model species. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-44133-2 |