Dynamic cluster formation determines viscosity and diffusion in dense protein solutions

We develop a detailed description of protein translational and rotational diffusion in concentrated solution on the basis of allatom molecular dynamics simulations in explicit solvent. Our systems contain up to 540 fully flexible proteins with 3.6 million atoms. In concentrated protein solutions (10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-05, Vol.116 (20), p.9843-9852
Hauptverfasser: von Bülow, Sören, Siggel, Marc, Linke, Max, Hummer, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a detailed description of protein translational and rotational diffusion in concentrated solution on the basis of allatom molecular dynamics simulations in explicit solvent. Our systems contain up to 540 fully flexible proteins with 3.6 million atoms. In concentrated protein solutions (100 mg/mL and higher), the proteins ubiquitin and lysozyme, as well as the protein domains third IgG-binding domain of protein G and villin headpiece, diffuse not as isolated particles, but as members of transient clusters between which they constantly exchange. A dynamic cluster model nearly quantitatively explains the increase in viscosity and the decrease in protein diffusivity with protein volume fraction, which both exceed the predictions from widely used colloid models. The Stokes–Einstein relations for translational and rotational diffusion remain valid, but the effective hydrodynamic radius grows linearly with protein volume fraction. This increase follows the observed increase in cluster size and explains the more dramatic slowdown of protein rotation compared with translation. Baxter’s sticky-sphere model of colloidal suspensions captures the concentration dependence of cluster size, viscosity, and rotational and translational diffusion. The consistency between simulations and experiments for a diverse set of soluble globular proteins indicates that the cluster model applies broadly to concentrated protein solutions, with equilibrium dissociation constants for nonspecific protein–protein binding in the Kd ≈ 10-mM regime.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1817564116