Plant-derived virus-like particle vaccines drive cross-presentation of influenza A hemagglutinin peptides by human monocyte-derived macrophages

A growing body of evidence supports the importance of T cell responses to protect against severe influenza, promote viral clearance, and ensure long-term immunity. Plant-derived virus-like particle (VLP) vaccines bearing influenza hemagglutinin (HA) have been shown to elicit strong humoral and CD4 +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj vaccines 2019-05, Vol.4 (1), p.17-17, Article 17
Hauptverfasser: Makarkov, Alexander I., Golizeh, Makan, Ruiz-Lancheros, Elizabeth, Gopal, Angelica A., Costas-Cancelas, Ian N., Chierzi, Sabrina, Pillet, Stephane, Charland, Nathalie, Landry, Nathalie, Rouiller, Isabelle, Wiseman, Paul W., Ndao, Momar, Ward, Brian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A growing body of evidence supports the importance of T cell responses to protect against severe influenza, promote viral clearance, and ensure long-term immunity. Plant-derived virus-like particle (VLP) vaccines bearing influenza hemagglutinin (HA) have been shown to elicit strong humoral and CD4 + T cell responses in both pre-clinical and clinical studies. To better understand the immunogenicity of these vaccines, we tracked the intracellular fate of a model HA (A/California/07/2009 H1N1) in human monocyte-derived macrophages (MDMs) following delivery either as VLPs (H1-VLP) or in soluble form. Compared to exposure to soluble HA, pulsing with VLPs resulted in ~3-fold greater intracellular accumulation of HA at 15 min that was driven by clathrin-mediated and clathrin-independent endocytosis as well as macropinocytosis/phagocytosis. At 45 min, soluble HA had largely disappeared suggesting its handling primarily by high-degradative endosomal pathways. Although the overall fluorescence intensity/cell had declined 25% at 45 min after H1-VLP exposure, the endosomal distribution pattern and degree of aggregation suggested that HA delivered by VLP had entered both high-degradative late and low-degradative static early and/or recycling endosomal pathways. At 45 min in the cells pulsed with VLPs, HA was strongly co-localized with Rab5, Rab7, Rab11, MHC II, and MHC I. High-resolution tandem mass spectrometry identified 115 HA-derived peptides associated with MHC I in the H1-VLP-treated MDMs. These data suggest that HA delivery to antigen-presenting cells on plant-derived VLPs facilitates antigen uptake, endosomal processing, and cross-presentation. These observations may help to explain the broad and cross-reactive immune responses generated by these vaccines. Antigen processing: Plant-derived virus-like particles Producing vaccines in plants can have several important advantages, including scalability and relatively low cost. Brian J. Ward and colleagues at McGill University examine the intracellular processing of a plant-derived virus-like particle (VLP) expressing influenza hemagglutinin H1 (H1-VLP) and compare this systematically with soluble monomeric H1. Human monocyte-derived macrophages rapidly take up soluble H1 via degradative pathways resulting in its poor presentation by MHC class I. In contrast, multiple endocytic and pinocytic mechanisms are used to internalize H1-VLP, including handling by non-degradative pathways which favors efficient cross-present
ISSN:2059-0105
2059-0105
DOI:10.1038/s41541-019-0111-y