Dimethylarsinic acid may promote prostate carcinogenesis in rats

Arsenic is a known human carcinogen, inducing tumors of the lung, urinary bladder, skin, liver and prostate. However, there are no reports of prostate tumors induced by arsenicals in in vivo animal models. In a previous study, we found that HMGB2 expression was a predictive marker for prostate carci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Toxicologic Pathology 2019, Vol.32(2), pp.73-77
Hauptverfasser: Suzuki, Shugo, Toyoda, Takeshi, Kato, Hiroyuki, Naiki-Ito, Aya, Yamashita, Yoriko, Akagi, Jun-ichi, Cho, Young-Man, Ogawa, Kumiko, Takahashi, Satoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arsenic is a known human carcinogen, inducing tumors of the lung, urinary bladder, skin, liver and prostate. However, there are no reports of prostate tumors induced by arsenicals in in vivo animal models. In a previous study, we found that HMGB2 expression was a predictive marker for prostate carcinogens in the rat 4-week repeated dose test. In this study, six-week-old male F344 rats were orally treated with a total of six chemicals (2-acetylaminofluorene (2-AAF), p-cresidine, dimethylarsinic acid (DMA), glycidol, N-nitrosodiethylamine and acrylamide) for four weeks. Animals were sacrificed at the end of the study, and HMGB2 and Ki-67 immunohistochemistry was performed. The numbers of HMGB2- and Ki-67- positive cells in all prostate lobes were significantly increased by DMA, one of the arsenicals, compared with the controls. Meanwhile, the number of Ki-67-positive cells in lateral and dorsal prostate lobes was significantly decreased by 2-AAF with the reduction of body weight, but HMGB2 expression was not. The other chemicals did not change HMGB2 and Ki-67 expression. These data indicate that DMA may have an ability to enhance prostate carcinogenesis.
ISSN:0914-9198
1881-915X
1347-7404
DOI:10.1293/tox.2018-0050