Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays

Objective. Implanted microelectrodes provide a unique means to directly interface with the nervous system but have been limited by the lack of stable functionality. There is growing evidence suggesting that substantially reducing the mechanical rigidity of neural electrodes promotes tissue compatibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2019-06, Vol.16 (3), p.035001-035001
Hauptverfasser: Zhao, Zhengtuo, Li, Xue, He, Fei, Wei, Xiaoling, Lin, Shengqing, Xie, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective. Implanted microelectrodes provide a unique means to directly interface with the nervous system but have been limited by the lack of stable functionality. There is growing evidence suggesting that substantially reducing the mechanical rigidity of neural electrodes promotes tissue compatibility and improves their recording stability in both the short- and long-term. However, the miniaturized dimensions and ultraflexibility desired for mitigating tissue responses preclude the probe's self-supported penetration into the brain tissue. Approach. Here we demonstrate the high-throughput implantation of multi-shank ultraflexible neural electrode arrays with surgical footprints as small as 200 µm2 in a mouse model. This is achieved by using arrays of tungsten microwires as shuttle devices, and bio-dissolvable adhesive polyethylene glycol (PEG) to temporarily attach a shank onto each microwire. Main results. We show the ability to simultaneously deliver electrode arrays in designed patterns, to adjust the implantation locations of the shanks by need, to target different brain structures, and to control the surgical injury by reducing the microwire diameters to cellular scale. Significance. These results provide a facile implantation method to apply ultraflexible neural probes in scalable neural recording.
ISSN:1741-2560
1741-2552
DOI:10.1088/1741-2552/ab05b6