Spatial reciprocity in the evolution of cooperation

Cooperation is key to the survival of all biological systems. The spatial structure of a system constrains who interacts with whom (interaction partner) and who acquires new traits from whom (role model). Understanding when and to what degree a spatial structure affects the evolution of cooperation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2019-04, Vol.286 (1900), p.20190041-20190041
Hauptverfasser: Su, Qi, Li, Aming, Wang, Long, Eugene Stanley, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cooperation is key to the survival of all biological systems. The spatial structure of a system constrains who interacts with whom (interaction partner) and who acquires new traits from whom (role model). Understanding when and to what degree a spatial structure affects the evolution of cooperation is an important and challenging topic. Here, we provide an analytical formula to predict when natural selection favours cooperation where the effects of a spatial structure are described by a single parameter. We find that a spatial structure promotes cooperation (spatial reciprocity) when interaction partners overlap role models. When they do not, spatial structure inhibits cooperation even without cooperation dilemmas. Furthermore, a spatial structure in which individuals interact with their role models more often shows stronger reciprocity. Thus, imitating individuals with frequent interactions facilitates cooperation. Our findings are applicable to both pairwise and group interactions and show that strong social ties might hinder, while asymmetric spatial structures for interaction and trait dispersal could promote cooperation.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2019.0041