Unravelling the multifaceted roles of Atg proteins to improve cancer therapy
Autophagy follows a lysosomal degradation pathway in which a cell digests its own components. It is highly regulated by a limited number of autophagy‐related genes (Atg) and the proteins they encode, that are crucial for cells to undergo the process via modulating autophagsome formation. Recently, a...
Gespeichert in:
Veröffentlicht in: | Cell proliferation 2014-04, Vol.47 (2), p.105-112 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autophagy follows a lysosomal degradation pathway in which a cell digests its own components. It is highly regulated by a limited number of autophagy‐related genes (Atg) and the proteins they encode, that are crucial for cells to undergo the process via modulating autophagsome formation. Recently, accumulating evidence has revealed the core molecular machinery of autophagy; however, intricate relationships between autophagy and cancer remain an enigma. Several studies have shown that Atgs can play an important role in carcinogenesis, by which Atgs may modulate a series of oncogenic and tumour suppressive pathways, implicating microRNA (miRNA) involvement. In this review, we will present the key role of Atgs in deciding the fate of cancer cells, discuss some representative Atgs and their proteins such as ULK, Beclin‐1, and Atg8/LC3‐Atg4, which can also be regulated by miRNAs. Thus, Atgs can be considered to be targets for cancer treatment, which may illuminate the future of cancer therapy. |
---|---|
ISSN: | 0960-7722 1365-2184 |
DOI: | 10.1111/cpr.12095 |