Pericellular oxygen depletion during ordinary tissue culturing, measured with oxygen microsensors
. Recent research has found important differences in oxygen tension in proximity to certain mammalian cells when grown in culture. Oxygen has a low diffusion rate through cell culture media, thus, as a result of normal respiration, a decrease in oxygen tension develops close to the cells. Therefore...
Gespeichert in:
Veröffentlicht in: | Cell proliferation 2005-08, Vol.38 (4), p.257-267 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | . Recent research has found important differences in oxygen tension in proximity to certain mammalian cells when grown in culture. Oxygen has a low diffusion rate through cell culture media, thus, as a result of normal respiration, a decrease in oxygen tension develops close to the cells. Therefore, for the purpose of standardization and optimization, it is important to monitor pericellular oxygen tension and cell oxygen consumption. Here, we describe an integrated oxygen microsensor and recording system that allows measurement of oxygen concentration profiles in vertical transects through a 1.6‐mm deep, stagnant, medium layer covering a cell culture. The measurement set‐up reveals that, when confluent, a conventional culture of adherent cells, although exposed to the constant oxygen tension of ambient air, may experience pericellular oxygen tensions below the level required to sustain full oxidative metabolism. Depletions reported are even more prominent and potentially aggravating when the cell culture is incubated at reduced oxygen tensions (down to around 4% oxygen). Our results demonstrate that, if the pericellular oxygen tension is not measured, it is impossible to relate in vitro culture results (for example, gene expression to the oxygen tension experienced by the cell), as this concentration may deviate very substantially from the oxygen concentration recorded in the gas phase. |
---|---|
ISSN: | 0960-7722 1365-2184 |
DOI: | 10.1111/j.1365-2184.2005.00345.x |