RNA interference may result in unexpected phenotypes in Caenorhabditis elegans

Abstract RNA interference (RNAi) is a valuable technique to determine gene function. In Caenorhabditis elegans, RNAi can be achieved by feeding worms bacteria carrying a plasmid expressing double-stranded RNA (dsRNA) targeting a gene of interest. The most commonly used plasmid vector for this purpos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-05, Vol.47 (8), p.3957-3969
Hauptverfasser: De-Souza, Evandro A, Camara, Henrique, Salgueiro, Willian G, Moro, Raíssa P, Knittel, Thiago L, Tonon, Guilherme, Pinto, Silas, Pinca, Ana Paula F, Antebi, Adam, Pasquinelli, Amy E, Massirer, Katlin B, Mori, Marcelo A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract RNA interference (RNAi) is a valuable technique to determine gene function. In Caenorhabditis elegans, RNAi can be achieved by feeding worms bacteria carrying a plasmid expressing double-stranded RNA (dsRNA) targeting a gene of interest. The most commonly used plasmid vector for this purpose is L4440. However, it has been noticed that sequences within L4440 may elicit unspecific effects. Here, we provide a comprehensive characterization of these effects and their mechanisms and describe new unexpected phenotypes uncovered by the administration of unspecific exogenous dsRNA. An example involves dsRNA produced by the multiple cloning site (MCS) of L4440, which shares complementary sequences with some widely used reporter vectors and induces partial transgene silencing via the canonical and antiviral RNAi pathway. Going beyond transgene silencing, we found that the reduced embryonic viability of mir-35-41(gk262) mutants is partially reversed by exogenous dsRNA via a mechanism that involves canonical RNAi. These results indicate cross-regulation between different small RNA pathways in C. elegans to regulate embryonic viability. Recognition of the possible unspecific effects elicited by RNAi vectors is important for rigorous interpretation of results from RNAi-based experiments.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkz154