Vibrissa motor cortex activity suppresses contralateral whisking behavior
Previous work on mammalian motor cortex has focused on the role of this region in movement generation. Here the authors demonstrate that activity of vibrissa motor cortex neurons decreases during various forms of vibrissal touch, suggesting that a primary function of vibrissa motor cortex is to supp...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2017-01, Vol.20 (1), p.82-89 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous work on mammalian motor cortex has focused on the role of this region in movement generation. Here the authors demonstrate that activity of vibrissa motor cortex neurons decreases during various forms of vibrissal touch, suggesting that a primary function of vibrissa motor cortex is to suppress whisking behavior.
Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and
in vivo
whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity. |
---|---|
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/nn.4437 |