Thermal and Mechanical Analysis of Polyethylene Homo-Composites Processed by Rotational Molding
This work is aimed at studying the suitability of ultra-high molecular weight polyethylene (UHMWPE) fibers for the production of polyethylene homo-composites processed by rotational molding. Initially pre-impregnated bars were produced by co-extrusion and compression molding of UHMWPE fibers and lin...
Gespeichert in:
Veröffentlicht in: | Polymers 2019-03, Vol.11 (3), p.528 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work is aimed at studying the suitability of ultra-high molecular weight polyethylene (UHMWPE) fibers for the production of polyethylene homo-composites processed by rotational molding. Initially pre-impregnated bars were produced by co-extrusion and compression molding of UHMWPE fibers and linear low-density polyethylene (LLDPE). A preliminary screening of different processing routes for the production of homo-composite reinforcing bars was performed, highlighting the relevance of fiber impregnation and crystalline structure on the mechanical properties. A combination of co-extrusion and compression molding was found to optimize the mechanical properties of the reinforcing bars, which were incorporated in the LLDPE matrix during a standard rotational molding process. Apart from fiber placement and an increase in processing time, processing of homo-composites did not require any modification of the existing production procedures. Plate bending tests performed on rotational molded homo-composites showed a modulus increase to a value three times higher than that of neat LLDPE. This increase was obtained by the addition of 4% of UHWMPE fibers and a negligible increase of the weight of the component. Dart impact tests also showed an increased toughness compared to neat LLPDE. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym11030528 |